Find the volume at \(i=\infty\) |
|
Find the surface area at \(i=\infty\) |
|
$$\frac{4\pi \cdot R^{3}}{3} + \sum_{n=1}^{i} \frac{24\pi \cdot 5^{n-1} \cdot R^{3}}{3\cdot2^{3n}}$$ |
:Initial Rule |
$$4\pi \cdot R^{2} + \sum_{n=1}^{i} 24\pi \cdot 5^{n-1} \cdot \frac{R^{2}}{2^{2n}}$$ |
:Initial Rule |
$$\frac{4\pi \cdot R^{3}}{3} + \frac{24\pi \cdot R^{3}}{3} \cdot \sum_{n=1}^{i} \frac{5^{n-1}}{2^{3n}}$$ |
$$\sum_{k=1}^{n}C \cdot k = a \cdot \sum_{k=1}^{n}k $$ |
$$4\pi \cdot R^{2} + 24\pi \cdot R^{2} \cdot \sum_{n=1}^{i} \frac{5^{n-1}}{2^{2n}}$$ |
$$\sum_{k=1}^{n}C \cdot k = a \cdot \sum_{k=1}^{n}k $$ |
$$\frac{4\pi \cdot R^{3}}{3} + \frac{24\pi \cdot R^{3}}{3} \cdot \sum_{n=1}^{i} \frac{5^{n-1}}{8^{n}}$$ |
$$(a^{b})^{c} = a^{b \cdot c}$$ |
$$4\pi \cdot R^{2} + 24\pi \cdot R^{2} \cdot \sum_{n=1}^{i} \frac{5^{n-1}}{4^{n}}$$ |
$$(a^{b})^{c} = a^{b \cdot c}$$ |
$$\frac{4\pi \cdot R^{3}}{3} + \pi \cdot R^{3} \cdot \sum_{n=1}^{i} (\frac{5}{8})^{n-1}$$ |
$$\sum_{k=1}^{n}C \cdot k = a \cdot \sum_{k=1}^{n}k $$ |
$$4\pi \cdot R^{2} + 6\pi \cdot R^{2} \cdot \sum_{n=1}^{i} (\frac{5}{4})^{n-1}$$ |
$$\sum_{k=1}^{n}C \cdot k = a \cdot \sum_{k=1}^{n}k $$ |
$$\frac{4\pi \cdot R^{3}}{3} + \pi \cdot R^{3} \cdot \lim_{i \to \infty}\sum_{n=1}^{i} (\frac{5}{8})^{n-1} = \frac{4\pi \cdot R^{3}}{3} + \pi \cdot R^{3} \cdot \lim_{i \to \infty}\frac{(\frac{5}{8})^{i}-1}{\frac{5}{8}-1}$$ |
: Geometric Series |
$$4\pi \cdot R^{2} + 6\pi \cdot R^{2} \cdot \lim_{i \to \infty}\sum_{n=1}^{i} (\frac{5}{4})^{n-1} = 4\pi \cdot R^{2} + 6\pi \cdot R^{2} \cdot \lim_{i \to \infty}\frac{(\frac{5}{4})^{i}-1}{\frac{5}{4}-1}$$ |
: Geometric Series |
$$\frac{4\pi \cdot R^{3}}{3} + \pi \cdot R^{3} \cdot \frac{0-1}{\frac{5}{8}-1}$$ |
: Simplify |
$$4\pi \cdot R^{2} + 6\pi \cdot R^{2} \cdot \frac{\infty-1}{\frac{5}{4}-1}$$ |
: Simplify |
$$\frac{4\pi \cdot R^{3}}{3} + \pi \cdot R^{3} \cdot \frac{8}{3}$$ |
: Calculations QED |
$$\infty$$ |
: Calculations QED |