n | Radius of added spheres | Number of added spheres | Volume of added spheres | Aera of added spheres |
---|---|---|---|---|
0 | $$R_{ini}$$ | 1 | $$\frac{4\pi \cdot R^{3}}{3}$$ | $$4\pi \cdot R^{2}$$ |
1 | $$\frac{R}{2}$$ | $$6$$ | $$6 \cdot 5^{0} \cdot \frac{4\pi \cdot (\frac{R}{2})^{3}}{3}$$ | $$6 \cdot 4\pi \cdot (\frac{R}{2})^{2}$$ |
2 | $$\frac{R}{2^{2}}$$ | $$6 \cdot 5^{1} $$ | $$6 \cdot 5^{1} \cdot \frac{4\pi \cdot (\frac{R}{2^{2}})^{3}}{3}$$ | $$6 \cdot 5^{1} \cdot 4\pi \cdot (\frac{R}{2^{2}})^{2}$$ |
3 | $$\frac{R}{2^{3}}$$ | $$6 \cdot 5^{2} $$ | $$6 \cdot 5^{2} \cdot \frac{4\pi \cdot (\frac{R}{2^{3}})^{3}}{3}$$ | $$6 \cdot 5^{2} \cdot 4\pi \cdot (\frac{R}{2^{3}})^{2}$$ |
4 | $$\frac{R}{2^{4}}$$ | $$6 \cdot 5^{3} $$ | $$6 \cdot 5^{3} \cdot \frac{4\pi \cdot (\frac{R}{2^{4}})^{3}}{3}$$ | $$6 \cdot 5^{3} \cdot 4\pi \cdot (\frac{R}{2^{4}})^{2}$$ |
5 | $$\frac{R}{2^{5}}$$ | $$6 \cdot 5^{4} $$ | $$6 \cdot 5^{4} \cdot \frac{4\pi \cdot (\frac{R}{2^{5}})^{3}}{3}$$ | $$6 \cdot 5^{4} \cdot 4\pi \cdot (\frac{R}{2^{5}})^{2}$$ |
6 | $$\frac{R}{2^{6}}$$ | $$6 \cdot 5^{5} $$ | $$6 \cdot 5^{5} \cdot \frac{4\pi \cdot (\frac{R}{2^{6}})^{3}}{3}$$ | $$6 \cdot 5^{5} \cdot 4\pi \cdot (\frac{R}{2^{6}})^{2}$$ |
The rule to find the volume of the fractal until iteration i will be : $$\frac{4\pi \cdot R^{3}}{3} + \sum_{n=1}^{i} \frac{24\pi \cdot 5^{n-1} \cdot R^{3}}{3\cdot2^{3n}}$$
The rule to find the surface area of the fractal until iteration i will be : $$4\pi \cdot R^{2} + \sum_{n=1}^{i} 24\pi \cdot 5^{n-1} \cdot \frac{R^{2}}{2^{2n}} $$