Universal Quantitative Algebra

Ralph Sarkis

ENS de Lyon
September 14th, 2023

Outline

Universal Algebra

Universal Quantitative Algebra

Monad Presentations

Conclusion

Universal Algebra

Definitions

A signature Σ is a set of operation symbols, each with an arity, we write op : $n \in \Sigma$ for an operation of arity $n \in \mathbb{N}$ belonging to Σ.

Universal Algebra

Definitions

A signature Σ is a set of operation symbols, each with an arity, we write op : $n \in \Sigma$ for an operation of arity $n \in \mathbb{N}$ belonging to Σ. A Σ-algebra is a set A equipped with an interpretation $\llbracket \mathrm{op} \rrbracket: A^{n} \rightarrow A$ for every op $: n \in \Sigma$.

Universal Algebra

Definitions

A signature Σ is a set of operation symbols, each with an arity, we write op : $n \in \Sigma$ for an operation of arity $n \in \mathbb{N}$ belonging to Σ. A Σ-algebra is a set A equipped with an interpretation $\llbracket \mathrm{op} \rrbracket: A^{n} \rightarrow A$ for every op : $n \in \Sigma$.

Examples

- A (join)-semilattice is a set S equipped with an associative, commutative and idempotent binary operation $\oplus: S \times S \rightarrow S$. It is a $\Sigma_{\mathcal{P}}$-algebra where $\Sigma_{\mathcal{P}}=\{\oplus: 2\}$ with some nice properties.

Universal Algebra

Definitions

A signature Σ is a set of operation symbols, each with an arity, we write op : $n \in \Sigma$ for an operation of arity $n \in \mathbb{N}$ belonging to Σ. A Σ-algebra is a set A equipped with an interpretation $\llbracket \mathrm{op} \rrbracket: A^{n} \rightarrow A$ for every op : $n \in \Sigma$.

Examples

- A (join)-semilattice is a set S equipped with an associative, commutative and idempotent binary operation $\oplus: S \times S \rightarrow S$. It is a $\Sigma_{\mathcal{P}}$-algebra where $\Sigma_{\mathcal{P}}=\{\oplus: 2\}$ with some nice properties.
- A convex algebra is a set C equipped with binary operations $+_{p}: C \times C \rightarrow C$ for every $p \in[0,1]$ that satisfy skewed associativity, commutativity, and idempotence. It is a $\Sigma_{\mathcal{D}}$-algebra where $\Sigma_{\mathcal{D}}=\left\{+_{p}: 2 \mid p \in[0,1]\right\}$ with some nice properties.

Universal Algebra

Definitions

A signature Σ is a set of operation symbols, each with an arity, we write op : $n \in \Sigma$ for an operation of arity $n \in \mathbb{N}$ belonging to Σ. A Σ-algebra is a set A equipped with an interpretation $\llbracket \mathrm{op} \rrbracket: A^{n} \rightarrow A$ for every op : $n \in \Sigma$.

Examples

- A (join)-semilattice is a set S equipped with an associative, commutative and idempotent binary operation $\oplus: S \times S \rightarrow S$. It is a $\Sigma_{\mathcal{P}}$-algebra where $\Sigma_{\mathcal{P}}=\{\oplus: 2\}$ with some nice properties.
- A convex algebra is a set C equipped with binary operations $+_{p}: C \times C \rightarrow C$ for every $p \in[0,1]$ that satisfy skewed associativity, commutativity, and idempotence. It is a $\Sigma_{\mathcal{D}}$-algebra where $\Sigma_{\mathcal{D}}=\left\{+_{p}: 2 \mid p \in[0,1]\right\}$ with some nice properties.
- A pointed set is a set X equipped with a constant $x \in X$ that we can identify with a function $x: X^{0} \rightarrow X$. It is a Σ_{-+1}-algebra where $\Sigma_{-+1}=\{\star: 0\}$.

Universal Algebra

Definition

The set of Σ-terms over a set X is defined inductively:

$$
\frac{x \in X}{x \in T_{\Sigma} X} \quad \frac{t_{1} \in T_{\Sigma} X \quad \ldots \quad t_{n} \in T_{\Sigma} X}{\operatorname{op}\left(t_{1}, \ldots, t_{n}\right) \in T_{\Sigma} X}
$$

Universal Algebra

Definition

The set of Σ-terms over a set X is defined inductively:

$$
\frac{x \in X}{x \in T_{\Sigma} X} \quad \frac{t_{1} \in T_{\Sigma} X \quad . . \quad t_{n} \in T_{\Sigma} X}{\operatorname{op}\left(t_{1}, \ldots, t_{n}\right) \in T_{\Sigma} X}
$$

The interpretation of operations in an algebra A lifts to terms of $T_{\Sigma} A$:
$\forall a \in A, \llbracket a \rrbracket=a \quad \forall t_{1}, \ldots, t_{n} \in T_{\Sigma} A, \mathrm{op}: n \in \Sigma, \llbracket \operatorname{op}\left(t_{1}, \ldots, t_{n}\right) \rrbracket=\llbracket \mathrm{op} \rrbracket\left(\llbracket t_{1} \rrbracket, \ldots, \llbracket t_{n} \rrbracket\right)$.

Universal Algebra

Definition

The set of Σ-terms over a set X is defined inductively:

$$
\frac{x \in X}{x \in T_{\Sigma} X} \quad \frac{t_{1} \in T_{\Sigma} X \quad \cdots \quad t_{n} \in T_{\Sigma} X}{\operatorname{op}\left(t_{1}, \ldots, t_{n}\right) \in T_{\Sigma} X}
$$

The interpretation of operations in an algebra A lifts to terms of $T_{\Sigma} A$:
$\forall a \in A, \llbracket a \rrbracket=a \quad \forall t_{1}, \ldots, t_{n} \in T_{\Sigma} A, \mathrm{op}: n \in \Sigma, \llbracket \operatorname{op}\left(t_{1}, \ldots, t_{n}\right) \rrbracket=\llbracket \mathrm{op} \rrbracket\left(\llbracket t_{1} \rrbracket, \ldots, \llbracket t_{n} \rrbracket\right)$.

In algebra, we often prove things like: "Suppose $g=g^{n}$, then ..."

Universal Algebra

Definition

The set of Σ-terms over a set X is defined inductively:

$$
\frac{x \in X}{x \in T_{\Sigma} X} \quad \frac{t_{1} \in T_{\Sigma} X \quad \cdots \quad t_{n} \in T_{\Sigma} X}{\operatorname{op}\left(t_{1}, \ldots, t_{n}\right) \in T_{\Sigma} X}
$$

The interpretation of operations in an algebra A lifts to terms of $T_{\Sigma} A$:
$\forall a \in A, \llbracket a \rrbracket=a \quad \forall t_{1}, \ldots, t_{n} \in T_{\Sigma} A, \mathrm{op}: n \in \Sigma, \llbracket \mathrm{op}\left(t_{1}, \ldots, t_{n}\right) \rrbracket=\llbracket \mathrm{op} \rrbracket\left(\llbracket t_{1} \rrbracket, \ldots, \llbracket t_{n} \rrbracket\right)$.

In algebra, we often prove things like: "Suppose $g=g^{n}$, then ..." Thus, we ask:
Question
Let $s, t \in T_{\Sigma} A$, if we know $\llbracket s \rrbracket=\llbracket t \rrbracket$, what else can we derive?

Birkhoff's Equational Logic

$\overline{X \vdash t=t}$ Refl

Birkhoff's Equational Logic

$$
\frac{X \vdash t=t}{X \vdash f l} \quad \frac{X \vdash s=t}{X \vdash t=s} \text { Sym }
$$

Birkhoff's Equational Logic

$$
\frac{R}{X \vdash t=t} \operatorname{Refl} \quad \frac{X \vdash s=t}{X \vdash t=s} \text { Sym } \quad \frac{X \vdash s=t \quad X \vdash t=u}{X \vdash s=u} \text { Trans }
$$

Birkhoff's Equational Logic

$$
\begin{aligned}
& \frac{X \vdash t=t}{X} \operatorname{Refl} \quad \frac{X \vdash s=t}{X \vdash t=s} \text { Sym } \quad \frac{X \vdash s=t \quad X \vdash t=u}{X \vdash s=u} \text { Trans } \\
& \frac{\text { op : } n \in \Sigma \quad \forall i \in[n], X \vdash s_{i}=t_{i}}{X \vdash \mathrm{op}\left(s_{1}, \ldots, s_{n}\right)=\mathrm{op}\left(t_{1}, \ldots, t_{n}\right)} \text { Cong }
\end{aligned}
$$

Birkhoff's Equational Logic

$$
\begin{gathered}
\frac{X \vdash t=t}{X} \operatorname{Refl} \quad \frac{X \vdash s=t}{X \vdash t=s} \text { Sym } \frac{X \vdash s=t \quad X \vdash t=u}{X \vdash s=u} \text { Trans } \\
\frac{\mathrm{op}: n \in \Sigma \quad \forall i \in[n], X \vdash s_{i}=t_{i}}{X \vdash o p\left(s_{1}, \ldots, s_{n}\right)=o p\left(t_{1}, \ldots, t_{n}\right)} \text { Cong } \\
\frac{\sigma: X \rightarrow T_{\Sigma}(Y) \quad X \vdash s=t}{Y \vdash \sigma^{*}(s)=\sigma^{*}(t)} \text { Sub }
\end{gathered}
$$

Birkhoff's Equational Logic

$$
\begin{array}{cc}
\frac{X \vdash t=t}{X} \text { Refl } \quad \frac{X \vdash s=t}{X \vdash t=s} \text { Sym } & \frac{X \vdash s=t \quad X \vdash t=u}{X \vdash s=u} \text { Trans } \\
\frac{\text { op }: n \in \Sigma \quad \forall i \in[n], X \vdash s_{i}=t_{i}}{X \vdash \operatorname{op}\left(s_{1}, \ldots, s_{n}\right)=\operatorname{op}\left(t_{1}, \ldots, t_{n}\right)} \text { Cong } & \frac{\sigma: X \rightarrow T_{\Sigma}(Y) \quad X \vdash s=t}{Y \vdash \sigma^{*}(s)=\sigma^{*}(t)} \text { Sub }
\end{array}
$$

Theorem
Equational logic is sound and complete.

Monads

Theorem

There is a correspondence between algebraic theories (a signature Σ and axioms E closed under equational logic) and finitary monads $T_{\Sigma, E}:$ Set \rightarrow Set such that Σ-algebras satisfying E correspond to $T_{\Sigma, E}$-algebras.

Monads

Theorem

There is a correspondence between algebraic theories (a signature Σ and axioms E closed under equational logic) and finitary monads $T_{\Sigma, E}:$ Set \rightarrow Set such that Σ-algebras satisfying E correspond to $T_{\Sigma, E}$-algebras.

Examples

- A semilattice is an algebra for the non-empty finite powerset monad $\mathcal{P}:$ Set \rightarrow Set.

Monads

Theorem

There is a correspondence between algebraic theories (a signature Σ and axioms E closed under equational logic) and finitary monads $T_{\Sigma, E}:$ Set \rightarrow Set such that Σ-algebras satisfying E correspond to $T_{\Sigma, E}$-algebras.

Examples

- A semilattice is an algebra for the non-empty finite powerset monad \mathcal{P} : Set \rightarrow Set.
- A convex algebra is an algebra for the finitely supported distribution monad $\mathcal{D}:$ Set \rightarrow Set.

Monads

Theorem

There is a correspondence between algebraic theories (a signature Σ and axioms E closed under equational logic) and finitary monads $T_{\Sigma, E}:$ Set \rightarrow Set such that Σ-algebras satisfying E correspond to $T_{\Sigma, E}$-algebras.

Examples

- A semilattice is an algebra for the non-empty finite powerset monad \mathcal{P} : Set \rightarrow Set.
- A convex algebra is an algebra for the finitely supported distribution monad $\mathcal{D}:$ Set \rightarrow Set.
- A pointed set is an algebra for the maybe monad $-+\mathbf{1}:$ Set \rightarrow Set.

Outline

Universal Algebra

Universal Quantitative Algebra

Monad Presentations

Conclusion

Universal Quantitative Algebra

We switch from the category Set to Met.

Universal Quantitative Algebra

We switch from the category Set to Met.
Definition
A quantitative Σ-algebra is a metric space (A, d) and a Σ-algebra on the same carrier, i.e. interpretations $\llbracket o p \rrbracket: A^{n} \rightarrow A$ for every op : $n \in \Sigma$.

Universal Quantitative Algebra

We switch from the category Set to Met.

Definition

A quantitative Σ-algebra is a metric space (A, d) and a Σ-algebra on the same carrier, i.e. interpretations $\llbracket o p \rrbracket: A^{n} \rightarrow A$ for every op $: n \in \Sigma$.

Example

Let $\Sigma_{\mathcal{D}}=\left\{+_{p}: 2\right\}_{p \in(0,1)}$ and (A, d) be a metric space. We denote by $(\mathcal{D} A, \widehat{d})$ the space of finite probability distributions on A with the Kantorovich metric.

Universal Quantitative Algebra

We switch from the category Set to Met.

Definition

A quantitative Σ-algebra is a metric space (A, d) and a Σ-algebra on the same carrier, i.e. interpretations $\llbracket \mathrm{op} \rrbracket: A^{n} \rightarrow A$ for every op $: n \in \Sigma$.

Example

Let $\Sigma_{\mathcal{D}}=\left\{+_{p}: 2\right\}_{p \in(0,1)}$ and (A, d) be a metric space. We denote by $(\mathcal{D} A, \widehat{d})$ the space of finite probability distributions on A with the Kantorovich metric. The interpretations

$$
\llbracket+_{p} \rrbracket: \mathcal{D} A \times \mathcal{D} A \rightarrow \mathcal{D} A=(\varphi, \psi) \mapsto p \varphi+(1-p) \psi
$$

yield a quantitative $\Sigma_{\mathcal{D}}$-algbera.

Universal Quantitative Algebra

We can now work with more information on terms: equality and distance. Thus we ask:

Question
Let (A, d) be a metric space and $s, t \in T_{\Sigma}$. If we know $d(\llbracket s \rrbracket, \llbracket t \rrbracket) \leq \varepsilon$, what else can we derive?

Universal Quantitative Algebra

We can now work with more information on terms: equality and distance. Thus we ask:

Question
Let (A, d) be a metric space and $s, t \in T_{\Sigma} A$. If we know $d(\llbracket s \rrbracket, \llbracket t \rrbracket) \leq \varepsilon$, what else can we derive?
The information on distance is now also relevant on variables, e.g.:
Question
If we know $d(\llbracket s \rrbracket, \llbracket t \rrbracket) \leq \varepsilon$ but only if the variables x and y are at distance δ, what else can we derive?

Quantitative Equational Logic

We introduce a binary predicate $={ }_{\varepsilon}$ which we interpret as the two inputs having distance at most ε, and the context (variables) is now a metric space. We add:

Quantitative Equational Logic

We introduce a binary predicate $={ }_{\varepsilon}$ which we interpret as the two inputs having distance at most ε, and the context (variables) is now a metric space. We add:

$$
\overline{\mathbf{X} \vdash s==_{\infty} t}
$$

Quantitative Equational Logic

We introduce a binary predicate $={ }_{\varepsilon}$ which we interpret as the two inputs having distance at most ε, and the context (variables) is now a metric space. We add:

$$
\frac{X \vdash s=\infty}{} \quad \frac{d_{\mathbf{X}}(x, y) \leq \varepsilon}{\mathbf{X} \vdash x={ }_{\varepsilon} y} \text { Vars }
$$

Quantitative Equational Logic

We introduce a binary predicate $={ }_{\varepsilon}$ which we interpret as the two inputs having distance at most ε, and the context (variables) is now a metric space. We add:

$$
\frac{X \vdash s=\infty t}{X \vdash} \quad \frac{d_{X}(x, y) \leq \varepsilon}{X \vdash x==_{\varepsilon} y} \vee \text { ars } \quad \frac{\mathbf{X} \vdash s={ }_{\varepsilon} t}{\mathbf{X} \vdash s=s=_{\varepsilon^{\prime}} t} \quad \varepsilon \leq \varepsilon^{\prime} \operatorname{Max}^{2}
$$

Quantitative Equational Logic

We introduce a binary predicate $={ }_{\varepsilon}$ which we interpret as the two inputs having distance at most ε, and the context (variables) is now a metric space. We add:

Quantitative Equational Logic

We introduce a binary predicate $={ }_{\varepsilon}$ which we interpret as the two inputs having distance at most ε, and the context (variables) is now a metric space. We add:

Quantitative Equational Logic

We introduce a binary predicate $={ }_{\varepsilon}$ which we interpret as the two inputs having distance at most ε, and the context (variables) is now a metric space. We add:

Quantitative Equational Logic

We introduce a binary predicate $={ }_{\varepsilon}$ which we interpret as the two inputs having distance at most ε, and the context (variables) is now a metric space. We add:

Quantitative Equational Logic

We introduce a binary predicate $={ }_{\varepsilon}$ which we interpret as the two inputs having distance at most ε, and the context (variables) is now a metric space. We add:

Quantitative Equational Logic

We introduce a binary predicate $={ }_{\varepsilon}$ which we interpret as the two inputs having distance at most ε, and the context (variables) is now a metric space. We add:

Quantitative Equational Logic

We introduce a binary predicate $={ }_{\varepsilon}$ which we interpret as the two inputs having distance at most ε, and the context (variables) is now a metric space. We add:

Quantitative Equational Logic

We introduce a binary predicate $={ }_{\varepsilon}$ which we interpret as the two inputs having distance at most ε, and the context (variables) is now a metric space. We add:

Quantitative Equational Logic

$$
\begin{aligned}
& \overline{\mathbf{X} \vdash s==_{\infty} t} \quad \frac{d_{\mathbf{X}}(x, y) \leq \varepsilon}{\mathbf{X} \vdash x={ }_{\varepsilon} y} \text { Vars } \quad \frac{\mathbf{X} \vdash s={ }_{\varepsilon} t \quad \varepsilon \leq \varepsilon^{\prime}}{\mathbf{X} \vdash s={ }_{\boldsymbol{q}^{\prime}} t} \operatorname{Max} \\
& \frac{\forall i, \mathbf{X} \vdash s={ }_{\varepsilon_{i}} t \quad \varepsilon=\inf _{i} \varepsilon_{i}}{\mathbf{X} \vdash s={ }_{\varepsilon} t} \text { OCo } \\
& \frac{\mathbf{X} \vdash s=t \quad \mathbf{X} \vdash s={ }_{\varepsilon} u}{\mathbf{X} \vdash t={ }_{\varepsilon} u} C_{\ell} \quad \frac{\mathbf{X} \vdash s=t \quad \mathbf{X} \vdash u={ }_{\varepsilon} s}{\mathbf{X} \vdash u={ }_{\varepsilon} t} C_{r} \\
& \begin{array}{lll}
\sigma: X \rightarrow T_{\Sigma} Y & \mathbf{X} \vdash s={ }_{(\varepsilon)} t & \mathbf{Y} \vdash \sigma(x)={ }_{d_{\mathbf{X}}\left(x, x^{\prime}\right)} \sigma\left(x^{\prime}\right) \\
\mathbf{Y} \vdash \sigma^{*}(s)={ }_{(\varepsilon)} \sigma^{*}(t) \\
\text { Sub }
\end{array} \\
& \left(\begin{array}{lll}
\left.\frac{\mathbf{X} \vdash s={ }_{\varepsilon} t}{\mathbf{X} \vdash t={ }_{\varepsilon} s} \quad \overline{\mathbf{X} \vdash t={ }_{0} t} \quad \frac{\mathbf{X} \vdash s={ }_{0} t}{\mathbf{X} \vdash s=t} \quad \frac{\mathbf{X} \vdash s={ }_{\varepsilon} t \quad \mathbf{X} \vdash t={ }_{\varepsilon^{\prime}} u}{\mathbf{X} \vdash s={ }_{\varepsilon+\varepsilon^{\prime}} u}\right)
\end{array}\right)
\end{aligned}
$$

Theorem
Quantitative equational logic is sound and complete.

Hausdorff Lifting

The Hausdorff lifting of the powerset monad $\widehat{\mathcal{P}}_{\mathrm{H}}$ is defined by

$$
(X, d) \mapsto\left(\mathcal{P} X, d_{\mathrm{H}}\right) \text { where } d_{\mathrm{H}}(S, T)=\max \left\{\max _{x \in S} \min _{y \in T} d(x, y), \max _{y \in T} \min _{x \in S} d(x, y)\right\}
$$

The unit and multiplication are the same as those of \mathcal{P}.

Hausdorff Lifting

The Hausdorff lifting of the powerset monad $\widehat{\mathcal{P}}_{H}$ is defined by

$$
(X, d) \mapsto\left(\mathcal{P} X, d_{\mathrm{H}}\right) \text { where } d_{\mathrm{H}}(S, T)=\max \left\{\max _{x \in S} \min _{y \in T} d(x, y), \max _{y \in T} \min _{x \in S} d(x, y)\right\}
$$

The unit and multiplication are the same as those of \mathcal{P}. Algebras for $\widehat{\mathcal{P}}_{\mathrm{H}}$ correspond to quantitative $\Sigma_{\mathcal{P}}$-algebras satisfying:

$$
\begin{gathered}
x \vdash x \oplus x=x \\
x, y \vdash x \oplus y=y \oplus x \\
x, y, z \vdash x \oplus(y \oplus z)=(x \oplus y) \oplus z \\
x={ }_{\varepsilon} x^{\prime}, y={ }_{\varepsilon^{\prime}} y^{\prime} \vdash x \oplus y={\max \left\{\varepsilon, \varepsilon^{\prime}\right\}} x^{\prime} \oplus y^{\prime}
\end{gathered}
$$

(idempotent)
(commutative)
(associative)
(Hausdorff)

Hausdorff Lifting

The Hausdorff lifting of the powerset monad $\widehat{\mathcal{P}}_{\mathrm{H}}$ is defined by

$$
(X, d) \mapsto\left(\mathcal{P} X, d_{\mathrm{H}}\right) \text { where } d_{\mathrm{H}}(S, T)=\max \left\{\max _{x \in S} \min _{y \in T} d(x, y), \max _{y \in T} \min _{x \in S} d(x, y)\right\}
$$

The unit and multiplication are the same as those of \mathcal{P}. Algebras for $\widehat{\mathcal{P}}_{\mathrm{H}}$ correspond to quantitative $\Sigma_{\mathcal{P}}$-algebras satisfying:

$$
\begin{gathered}
x \vdash x \oplus x=x \\
x, y \vdash x \oplus y=y \oplus x \\
x, y, z \vdash x \oplus(y \oplus z)=(x \oplus y) \oplus z \\
x={ }_{\varepsilon} x^{\prime}, y==_{\varepsilon^{\prime}} y^{\prime} \vdash x \oplus y={\max \left\{\varepsilon, \varepsilon^{\prime}\right\}} x^{\prime} \oplus y^{\prime}
\end{gathered}
$$

(idempotent)
(commutative)
(associative)
(Hausdorff)
In all these algebras, \oplus is a nonexpansive operation $(X, d)^{2} \rightarrow(X, d)$.

Not Hausdorff Lifting

After removing that last quantitative equation, we get algebras for the monad $\widehat{\mathcal{P}}$ defined by:

$$
(X, d) \mapsto(\mathcal{P} X, \widehat{d}) \text { where } \widehat{d}(S, T)= \begin{cases}0 & S=T \\ d(x, y) & S=\{x\} \text { and } T=\{y\} \\ 1 & \text { otherwise }\end{cases}
$$

ŁK Lifting

The Łukaszyk-Karmowski lifting of the distribution monad $\widehat{\mathcal{D}}_{\text {モK }}$ is defined by:

$$
(X, d) \mapsto\left(\mathcal{D} X, d_{\mathrm{EK}}\right) \text { where } d_{\mathrm{EK}}(\varphi, \psi)=\sum_{x, x^{\prime} \in X} \varphi(x) \psi\left(x^{\prime}\right) d\left(x, x^{\prime}\right)
$$

The unit and multiplication are the same as those of \mathcal{D}.

ŁK Lifting

The Łukaszyk-Karmowski lifting of the distribution monad $\widehat{\mathcal{D}}_{\text {モK }}$ is defined by:

$$
(X, d) \mapsto\left(\mathcal{D} X, d_{\mathrm{EK}}\right) \text { where } d_{\mathrm{EK}}(\varphi, \psi)=\sum_{x, x^{\prime} \in X} \varphi(x) \psi\left(x^{\prime}\right) d\left(x, x^{\prime}\right) .
$$

The unit and multiplication are the same as those of \mathcal{D}. Algebras for $\widehat{\mathcal{D}}_{\text {EK }}$ correspond to quantitative $\Sigma_{\mathcal{D}}$-algebras satsifying:

$$
\begin{array}{cl}
x \vdash x+{ }_{p} x=x & \\
x, y \vdash x+_{p} y=y+{ }_{1-p} x & \text { (idempotent) } \\
x, y, z \vdash\left(x+_{q} y\right)+_{p} z=x+_{p q}\left(y+_{\frac{p(1-q)}{1-p q}} z\right) & \\
x={ }_{\varepsilon_{1}} y, x={ }_{\varepsilon_{2}} z \vdash x={ }_{p \varepsilon_{1}+(1-p) \varepsilon_{2}} y+_{p} z & \tag{ŁK}
\end{array}
$$

Outline

Universal Algebra

Universal Quantitative Algebra

Monad Presentations

Conclusion

Set Presentations

Given an algebraic theory (Σ, E), the free algebra monad $T_{\Sigma, E}$ is given by

$$
X \mapsto T_{\Sigma} X / \equiv_{E} \text {, where } \equiv_{E}=\{(s, t) \mid X \vdash s=t \in E\} .
$$

A Σ-algebra satisfying E is the same thing as a $T_{\Sigma, E}$-algebra.

Set Presentations

Given an algebraic theory (Σ, E), the free algebra monad $T_{\Sigma, E}$ is given by

$$
X \mapsto T_{\Sigma} X / \equiv_{E} \text {, where } \equiv_{E}=\{(s, t) \mid X \vdash s=t \in E\} .
$$

A Σ-algebra satisfying E is the same thing as a $T_{\Sigma, E}$-algebra.

Definition

A monad M on Set is presented by (Σ, E) if there is a monad isomorphism $\rho: T_{\Sigma, E} \cong M$.

Met Presentations

Given a quantitative algebraic theory (Σ, \widehat{E}), the free quantitative algebra monad $\widehat{T}_{\Sigma, \widehat{E}}$ is given by

$$
\mathbf{X} \mapsto\left(T_{\Sigma} X / \equiv_{\widehat{E}}, d_{\widehat{E}}\right) \text {, where } \quad \begin{gathered}
\overline{\bar{E}}_{\widehat{E}}=\{(s, t) \mid \mathbf{X} \vdash s=t\} \\
d_{\widehat{E}}([s],[t])=\inf \left\{\varepsilon \in[0, \infty] \mid \mathbf{X} \vdash s={ }_{\varepsilon} t\right\}
\end{gathered}
$$

A quantitative Σ-algebra satisfying \widehat{E} is the same thing as a $\widehat{T}_{\Sigma, \widehat{E}^{-}}$-algebra.

Met Presentations

Given a quantitative algebraic theory (Σ, \widehat{E}), the free quantitative algebra monad $\widehat{T}_{\Sigma, \hat{E}}$ is given by

$$
\mathbf{X} \mapsto\left(T_{\Sigma} X / \bar{E}_{\widehat{E}}, d_{\widehat{E}}\right) \text {, where } \begin{gathered}
\overline{E_{\widehat{E}}}=\{(s, t) \mid \mathbf{X} \vdash s=t\} \\
d_{\widehat{E}}([s],[t])=\inf \left\{\varepsilon \in[0, \infty] \mid \mathbf{X} \vdash s==_{\varepsilon} t\right\}
\end{gathered} \text {. }
$$

A quantitative Σ-algebra satisfying \widehat{E} is the same thing as a $\widehat{T}_{\Sigma, \widehat{E}^{-}}$-algebra.

Definition

A monad \widehat{M} on Met is presented by (Σ, \widehat{E}) if there is a monad isomorphism $\widehat{\rho}: \widehat{T}_{\Sigma, \widehat{E}} \cong \widehat{M}$.

Lifting Presentations

Let (M, η, μ) be a monad on Set, and (Σ, E) be an algebraic presentation for it via $\rho: T_{\Sigma, E} \cong M$.

Definitions

A monad lifting of M to Met is a monad $\widehat{M}:$ Met \rightarrow Met whose functor, unit and multiplication coincide with those of M after applying U : Met \rightarrow Set.

Lifting Presentations

Let (M, η, μ) be a monad on Set, and (Σ, E) be an algebraic presentation for it via $\rho: T_{\Sigma, E} \cong M$.

Definitions

A monad lifting of M to Met is a monad $\widehat{M}:$ Met \rightarrow Met whose functor, unit and multiplication coincide with those of M after applying U : Met \rightarrow Set.
A quantitative extension of E is a quantitative algebraic theory \widehat{E} on the same signature Σ satisfying for all $\mathbf{X} \in \mathbf{M e t}$ and $s, t \in T_{\Sigma} X$,

$$
X \vdash s=t \in E \Longleftrightarrow \mathbf{X} \vdash s=t \in \widehat{E}
$$

Lifting Presentations

Let (M, η, μ) be a monad on Set, and (Σ, E) be an algebraic presentation for it via $\rho: T_{\Sigma, E} \cong M$.

Definitions

A monad lifting of M to Met is a monad $\widehat{M}:$ Met \rightarrow Met whose functor, unit and multiplication coincide with those of M after applying U : Met \rightarrow Set.
A quantitative extension of E is a quantitative algebraic theory \widehat{E} on the same signature Σ satisfying for all $\mathbf{X} \in \mathbf{M e t}$ and $s, t \in T_{\Sigma} X$,

$$
X \vdash s=t \in E \Longleftrightarrow \mathbf{X} \vdash s=t \in \widehat{E} .
$$

Theorem

There is a correspondence between monad liftings of M and quantitative extensions of E.

Extension to Lifting (Easy)

- The equivalence

$$
X \vdash s=t \in E \Longleftrightarrow \mathbf{X} \vdash s=t \in \widehat{E}
$$

really says that $\equiv_{E}=\overline{=}_{\widehat{E}}$, so the functors $T_{\Sigma, E}$ and $\widehat{T}_{\Sigma, \widehat{E}}$ agree on sets.

Extension to Lifting (Easy)

- The equivalence

$$
X \vdash s=t \in E \Longleftrightarrow \mathbf{X} \vdash s=t \in \widehat{E}
$$

really says that $\equiv_{E}=\overline{=}_{\widehat{E}}$, so the functors $T_{\Sigma, E}$ and $\widehat{T}_{\Sigma, \widehat{E}}$ agree on sets.

- It follows from the syntactic definitions that the units and multiplications also coincide, hence $\widehat{T}_{\Sigma, \widehat{E}}$ is a monad lifting of $T_{\Sigma, E}$.

Extension to Lifting (Easy)

- The equivalence

$$
X \vdash s=t \in E \Longleftrightarrow \mathbf{X} \vdash s=t \in \widehat{E}
$$

really says that $\equiv_{E}=\overline{=}_{\widehat{E}}$, so the functors $T_{\Sigma, E}$ and $\widehat{T}_{\Sigma, \widehat{E}}$ agree on sets.

- It follows from the syntactic definitions that the units and multiplications also coincide, hence $\widehat{T}_{\Sigma, \widehat{E}}$ is a monad lifting of $T_{\Sigma, E}$.
- Via the isomorphism $\rho: T_{\Sigma, E} \cong M$, we can construct the monad lifting by

$$
\widehat{M}(X, d)=(M X, \widehat{d}), \text { where } \widehat{d}\left(m, m^{\prime}\right)=d_{\widehat{E}}\left(\rho^{-1} m, \rho^{-1} m^{\prime}\right)
$$

Lifting to Extension

- Put some equations in \widehat{E} :

For all $X \vdash s=t \in E$, add $\mathbf{X}_{\perp} \vdash s=t$ to \widehat{E}.

Lifting to Extension

- Put some equations in \widehat{E} :

$$
\text { For all } X \vdash s=t \in E \text {, add } \mathbf{X}_{\perp} \vdash s=t \text { to } \widehat{E} \text {. }
$$

- Put some quantitative equations in \widehat{E} :

For all $(X, d) \in$ Met and $s, t \in T_{\Sigma} X$, add $(X, d) \vdash s=_{\widehat{d}(\rho[s], \rho[t])} t$ to \widehat{E}.

Lifting to Extension

- Put some equations in \widehat{E} :

$$
\text { For all } X \vdash s=t \in E \text {, add } \mathbf{X}_{\perp} \vdash s=t \text { to } \widehat{E} \text {. }
$$

- Put some quantitative equations in \widehat{E} :

$$
\text { For all }(X, d) \in \text { Met and } s, t \in T_{\Sigma} X, \text { add }(X, d) \vdash s=_{\widehat{d}(\rho[s], \rho[t])} t \text { to } \widehat{E} .
$$

- Show that nothing else is entailed by exhibiting $\widehat{M}(\mathbf{X})$ as the free Σ-algebra satisfying \widehat{E} generated by \mathbf{X}.

Outline

Universal Algebra
Universal Quantitative Algebra
Monad Presentations

Conclusion

To Be Done

- Make the result more categorical in flavor.
- What about infinitary theories?
- What about composing monads?
- Further simplify the entry point to quantitative algebraic reasoning.

Merci !

