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Universal Algebra

Definitions
A signature Σ is a set of operation symbols, each with an arity, we write op : n ∈ Σ
for an operation of arity n ∈ N belonging to Σ.

A Σ–algebra is a set A equipped
with an interpretation JopK : An → A for every op : n ∈ Σ.

Examples

▶ A (join)-semilattice is a set S equipped with an associative, commutative and
idempotent binary operation ⊕ : S × S → S. It is a ΣP -algebra where
ΣP = {⊕ : 2} with some nice properties.

▶ A convex algebra is a set C equipped with binary operations +p : C × C → C
for every p ∈ [0, 1] that satisfy skewed associativity, commutativity, and
idempotence. It is a ΣD-algebra where ΣD = {+p : 2 | p ∈ [0, 1]} with some
nice properties.

▶ A pointed set is a set X equipped with a constant x ∈ X that we can identify
with a function x : X0 → X. It is a Σ−+1-algebra where Σ−+1 = {⋆ : 0}.
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Universal Algebra

Definition
The set of Σ–terms over a set X is defined inductively:

x ∈ X
x ∈ TΣX

t1 ∈ TΣX · · · tn ∈ TΣX
op(t1, . . . , tn) ∈ TΣX

The interpretation of operations in an algebra A lifts to terms of TΣA:

∀a ∈ A, JaK = a ∀t1, . . . , tn ∈ TΣA, op : n ∈ Σ, Jop(t1, . . . , tn)K = JopK(Jt1K, . . . , JtnK).

In algebra, we often prove things like: “Suppose g = gn, then ...” Thus, we ask:

Question
Let s, t ∈ TΣA, if we know JsK = JtK, what else can we derive?
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Birkhoff’s Equational Logic

ReflX ⊢ t = t

X ⊢ s = t Sym
X ⊢ t = s

X ⊢ s = t X ⊢ t = u
TransX ⊢ s = u

op : n ∈ Σ ∀i ∈ [n], X ⊢ si = ti
Cong

X ⊢ op(s1, . . . , sn) = op(t1, . . . , tn)

σ : X → TΣ(Y) X ⊢ s = t
Sub

Y ⊢ σ∗(s) = σ∗(t)
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Theorem
Equational logic is sound and complete.
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Monads

Theorem
There is a correspondence between algebraic theories (a signature Σ and axioms E closed
under equational logic) and finitary monads TΣ,E : Set → Set such that Σ-algebras
satisfying E correspond to TΣ,E-algebras.

Examples

▶ A semilattice is an algebra for the non-empty finite powerset monad
P : Set → Set.

▶ A convex algebra is an algebra for the finitely supported distribution monad
D : Set → Set.

▶ A pointed set is an algebra for the maybe monad −+ 1 : Set → Set.
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Universal Quantitative Algebra

We switch from the category Set to Met.

Definition
A quantitative Σ–algebra is a metric space (A, d) and a Σ-algebra on the same
carrier, i.e. interpretations JopK : An → A for every op : n ∈ Σ.

Example
Let ΣD = {+p : 2}p∈(0,1) and (A, d) be a metric space. We denote by (DA, d̂) the
space of finite probability distributions on A with the Kantorovich metric. The
interpretations

J+pK : DA ×DA → DA = (φ, ψ) 7→ pφ + (1 − p)ψ

yield a quantitative ΣD–algbera.
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Universal Quantitative Algebra

We can now work with more information on terms: equality and distance. Thus
we ask:

Question
Let (A, d) be a metric space and s, t ∈ TΣA. If we know d(JsK, JtK) ≤ ε, what else can we
derive?

The information on distance is now also relevant on variables, e.g.:

Question
If we know d(JsK, JtK) ≤ ε but only if the variables x and y are at distance δ, what else can
we derive?
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Quantitative Equational Logic

We introduce a binary predicate =ε which we interpret as the two inputs having
distance at most ε, and the context (variables) is now a metric space. We add:

X ⊢ s =∞ t
dX(x, y) ≤ ε

VarsX ⊢ x =ε y
X ⊢ s =ε t ε ≤ ε′

MaxX ⊢ s =ε′ t
∀i, X ⊢ s =εi t ε = infi εi

OCX ⊢ s =ε t
X ⊢ s = t X ⊢ s =ε u

CℓX ⊢ t =ε u
X ⊢ s = t X ⊢ u =ε s

CrX ⊢ u =ε t
σ : X → TΣY X ⊢ s =ε t Y ⊢ σ(x) =dX(x,x′) σ(x′)

Sub
Y ⊢ σ∗(s) =ε σ∗(t)

X ⊢ s =ε t
X ⊢ t =ε s X ⊢ t =0 t

X ⊢ s =0 t
X ⊢ s = t

X ⊢ s =ε t X ⊢ t =ε′ u
X ⊢ s =ε+ε′ u
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Quantitative Equational Logic

X ⊢ s =∞ t
dX(x, y) ≤ ε

VarsX ⊢ x =ε y
X ⊢ s =ε t ε ≤ ε′

MaxX ⊢ s =ε′ t
∀i, X ⊢ s =εi t ε = infi εi

OCoX ⊢ s =ε t
X ⊢ s = t X ⊢ s =ε u

CℓX ⊢ t =ε u
X ⊢ s = t X ⊢ u =ε s

CrX ⊢ u =ε t
σ : X → TΣY X ⊢ s =(ε) t Y ⊢ σ(x) =dX(x,x′) σ(x′)

Sub
Y ⊢ σ∗(s) =(ε) σ∗(t)

(
X ⊢ s =ε t
X ⊢ t =ε s X ⊢ t =0 t

X ⊢ s =0 t
X ⊢ s = t

X ⊢ s =ε t X ⊢ t =ε′ u
X ⊢ s =ε+ε′ u

)

Theorem
Quantitative equational logic is sound and complete.
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Hausdorff Lifting

The Hausdorff lifting of the powerset monad P̂H is defined by

(X, d) 7→ (PX, dH) where dH(S, T) = max
{

max
x∈S

min
y∈T

d(x, y), max
y∈T

min
x∈S

d(x, y)
}

.

The unit and multiplication are the same as those of P .

Algebras for P̂H

correspond to quantitative ΣP -algebras satisfying:

x ⊢ x ⊕ x = x (idempotent)
x, y ⊢ x ⊕ y = y ⊕ x (commutative)

x, y, z ⊢ x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z (associative)
x =ε x′, y =ε′ y′ ⊢ x ⊕ y =max{ε,ε′} x′ ⊕ y′ (Hausdorff)

In all these algebras, ⊕ is a nonexpansive operation (X, d)2 → (X, d).
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Not Hausdorff Lifting

After removing that last quantitative equation, we get algebras for the monad P̂
defined by:

(X, d) 7→ (PX, d̂) where d̂(S, T) =


0 S = T
d(x, y) S = {x} and T = {y}
1 otherwise

.
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ŁK Lifting

The Łukaszyk–Karmowski lifting of the distribution monad D̂ŁK is defined by:

(X, d) 7→ (DX, dŁK) where dŁK(φ, ψ) = ∑
x,x′∈X

φ(x)ψ(x′)d(x, x′).

The unit and multiplication are the same as those of D.

Algebras for D̂ŁK
correspond to quantitative ΣD-algebras satsifying:

x ⊢ x +p x = x (idempotent)
x, y ⊢ x +p y = y +1−p x (skew comm.)

x, y, z ⊢ (x +q y) +p z = x +pq (y + p(1−q)
1−pq

z) (skew assoc.)

x =ε1 y, x =ε2 z ⊢ x =pε1+(1−p)ε2
y +p z (ŁK)
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Set Presentations

Given an algebraic theory (Σ, E), the free algebra monad TΣ,E is given by

X 7→ TΣX/≡E, where ≡E = {(s, t) | X ⊢ s = t ∈ E}.

A Σ-algebra satisfying E is the same thing as a TΣ,E-algebra.

Definition
A monad M on Set is presented by (Σ, E) if there is a monad isomorphism
ρ : TΣ,E ∼= M.
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Met Presentations

Given a quantitative algebraic theory (Σ, Ê), the free quantitative algebra monad
T̂Σ,Ê is given by

X 7→ (TΣX/≡Ê, dÊ), where
≡Ê = {(s, t) | X ⊢ s = t}

dÊ([s], [t]) = inf {ε ∈ [0, ∞] | X ⊢ s =ε t}.

A quantitative Σ-algebra satisfying Ê is the same thing as a T̂Σ,Ê-algebra.

Definition
A monad M̂ on Met is presented by (Σ, Ê) if there is a monad isomorphism
ρ̂ : T̂Σ,Ê

∼= M̂.
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Lifting Presentations

Let (M, η, µ) be a monad on Set, and (Σ, E) be an algebraic presentation for it via
ρ : TΣ,E ∼= M.

Definitions
A monad lifting of M to Met is a monad M̂ : Met → Met whose functor, unit and
multiplication coincide with those of M after applying U : Met → Set.

A quantitative extension of E is a quantitative algebraic theory Ê on the same
signature Σ satisfying for all X ∈ Met and s, t ∈ TΣX,

X ⊢ s = t ∈ E ⇐⇒ X ⊢ s = t ∈ Ê.

Theorem
There is a correspondence between monad liftings of M and quantitative extensions of E.
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Extension to Lifting (Easy)

▶ The equivalence
X ⊢ s = t ∈ E ⇐⇒ X ⊢ s = t ∈ Ê

really says that ≡E=≡Ê, so the functors TΣ,E and T̂Σ,Ê agree on sets.

▶ It follows from the syntactic definitions that the units and multiplications also
coincide, hence T̂Σ,Ê is a monad lifting of TΣ,E.

▶ Via the isomorphism ρ : TΣ,E ∼= M, we can construct the monad lifting by

M̂(X, d) = (MX, d̂), where d̂(m, m′) = dÊ(ρ
−1m, ρ−1m′).
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Lifting to Extension

▶ Put some equations in Ê:

For all X ⊢ s = t ∈ E, add X⊥ ⊢ s = t to Ê.

▶ Put some quantitative equations in Ê:

For all (X, d) ∈ Met and s, t ∈ TΣX, add (X, d) ⊢ s =d̂(ρ[s],ρ[t]) t to Ê.

▶ Show that nothing else is entailed by exhibiting M̂(X) as the free Σ-algebra
satisfying Ê generated by X.
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▶ Put some quantitative equations in Ê:
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For all X ⊢ s = t ∈ E, add X⊥ ⊢ s = t to Ê.
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To Be Done

▶ Make the result more categorical in flavor.
▶ What about infinitary theories?
▶ What about composing monads?
▶ Further simplify the entry point to quantitative algebraic reasoning.

23 / 24



Merci !
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