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with an interpretation Jop] : A" — A for every op : n € X.

Examples

> A (join)-semilattice is a set S equipped with an associative, commutative and
idempotent binary operation © : S x S — S. Itis a Xp-algebra where
Yp = {® : 2} with some nice properties.

> A convex algebra is a set C equipped with binary operations +, : C x C — C
for every p € [0, 1] that satisfy skewed associativity, commutativity, and
idempotence. It is a ©p-algebra where Xp = {+, : 2 | p € [0,1]} with some
nice properties.

> A pointed set is a set X equipped with a constant x € X that we can identify
with a function x : X* — X. Itis a £_1-algebra where X_ 1 = {x: 0}.
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Universal Algebra

Definition
The set of X—terms over a set X is defined inductively:

xeX t € TeX t, € Ty X
xe Ty X Op(tl,. . .,tn) e TsX

The interpretation of operations in an algebra A lifts to terms of Ty A:

VacA [al=a Vh,...,tn € TsA,op:n €L, [op(ts, ..., tn)] = [op]([t1], - - -, [ta])-

In algebra, we often prove things like: “Suppose ¢ = ¢", then ...” Thus, we ask:

Question
Let s,t € Ty A, if we know [s]| = [t], what else can we derive?
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Birkhoft’s Equational Logic

- Xbs=t
XFi=¢ et Xrt=s M

op:n€EX Vien|,XkEsi=t
Cong

Xt op(s1,...,5n) =op(ty, ..., tn)

Theorem
Equational logic is sound and complete.

XkFs=t XHt=u

XFs=u Trans

c: X Te(Y) Xbs=t

YroG) =@ oW
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Monads

Theorem

There is a correspondence between algebraic theories (a signature ¥ and axioms E closed
under equational logic) and finitary monads Ts r : Set — Set such that Y-algebras
satisfying E correspond to T g-algebras.
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There is a correspondence between algebraic theories (a signature ¥ and axioms E closed
under equational logic) and finitary monads Ty g : Set — Set such that Y.-algebras
satisfying E correspond to T g-algebras.

Examples

> A semilattice is an algebra for the non-empty finite powerset monad
P : Set — Set.

» A convex algebra is an algebra for the finitely supported distribution monad
D : Set — Set.

> A pointed set is an algebra for the maybe monad — +1: Set — Set.
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We switch from the category Set to Met.

Definition
A quantitative X-algebra is a metric space (A, d) and a X-algebra on the same
carrier, i.e. interpretations [op] : A" — A for everyop:n € X.

Example

Let Xp = {+p : 2},¢(0,1) and (A, d) be a metric space. We denote by (DA, d) the
space of finite probability distributions on A with the Kantorovich metric. The
interpretations

[+,] : DAX DA = DA = (¢, ) = pp+ (1 —p)p

yield a quantitative Xp—algbera.

9/24



Universal Quantitative Algebra

We can now work with more information on terms: equality and distance. Thus
we ask:

Question

Let (A,d) be a metric space and s,t € TxA. If we know d([s], [t]) < €, what else can we
derive?

10/24



Universal Quantitative Algebra

We can now work with more information on terms: equality and distance. Thus
we ask:
Question

Let (A,d) be a metric space and s,t € TxA. If we know d([s], [t]) < €, what else can we
derive?

The information on distance is now also relevant on variables, e.g.:

Question

If we know d([s], [#]) < e but only if the variables x and y are at distance 6, what else can
we derive?
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Quantitative Equational Logic

dx(x,y) <e Xks=t e<¢
XFs=wt Xrxey Vo XFs=gt M
Vi,XFS:git 8:il’1fi€i
Co
XkEs=t
Xks=t Xl—s:guC Xks=t Xl—uzgsC
XFt=cu ¢ XFu=t ’
c:X—=TsY  Xks=gt  YFo(x) =g o)
YFo(s) = o (1) Sub
<Xl—s:£t Xks=ot  Xks=ct xwzgfu>
Xkt=s Xkt=ot XFs=t XFs=gou

Theorem
Quantitative equational logic is sound and complete.
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Hausdorff Lifting

The Hausdorff lifting of the powerset monad Py is defined by

X,d X,d h /T == i ' Y) i ’ .
(X,d) — (PX,dy) where dy (S, T) = max {rilgg(r;el?d(x ) I;leaTXI?G%’ld(X y)}

The unit and multiplication are the same as those of P.
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X,d X,d h /T == i ' Y) i ’ .
(X,d) — (PX,dy) where dy (S, T) = max {r?éasxr;g?d(x ) rilea%(r?elgld(x y)}

The unit and multiplication are the same as those of P. Algebras for 73H
correspond to quantitative X p-algebras satisfying:

xFx®x=x (idempotent)
x,yFx®oy=yodx (commutative)
xyzEx®(ydz)=(xdy) dz (associative)
X=X, Y=o ¥ FXDY =maxfeer ¥ DY (Hausdorff)

In all these algebras, & is a nonexpansive operation (X,d)? — (X, d).
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Not Hausdorff Lifting

After removing that last quantitative equation, we get algebras for the monad P
defined by:

0 S=T
(X,d) — (PX,d) where d(S,T) = { d(x,y) S={x}and T = {y}.
1 otherwise
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LK Lifting

The Lukaszyk-Karmowski lifting of the distribution monad Dy is defined by:
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LK Lifting

The Lukaszyk-Karmowski lifting of the distribution monad Dy is defined by:

(X,d) (DX dLK) where dLK QD, Z §0 /)

x,x'eX

The unit and multiplication are the same as those of D. Algebras for ﬁLK
correspond to quantitative Xp-algebras satsifying:

xEx+px=x (idempotent)
YFxt+py=y+1px (skew comm.)
X Y,zE (x+qy) +pz=x+p; (Y +p09 2) (skew assoc.)

1w1

X =e YrX =¢ 2 - x per+(1-pey Y +pz (LK)
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Met Presentations

Given a quantitative algebraic theory (%, E), the free quantitative algebra monad
Ty 3 is given by

B =; ={(s,t) [ XFs=1t}
X (TeX/=pdp) where g (1) (1) = inf {e € [0,00] | X 5 = £}’

A quantitative T-algebra satisfying E is the same thing as a TA"Z g-algebra.
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Met Presentations

Given a quantitative algebraic theory (%, E), the free quantitative algebra monad
Ty 3 is given by

=z ={(s,t) | XFs=t}

X — (TxX/=¢,dz), where dz([s], [t]) = inf{e € [0,00] | X -5 = t}’

A quantitative T-algebra satisfying E is the same thing as a TA"Z g-algebra.

Definition
A monad M on Met is presented by (X, E) if there is a monad isomorphism
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Lifting Presentations

Let (M, 7, 1) be a monad on Set, and (X, E) be an algebraic presentation for it via
[ TZ,E = M.

Definitions R
A monad lifting of M to Met is a monad M : Met — Met whose functor, unit and
multiplication coincide with those of M after applying U : Met — Set.
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Let (M, 7, 1) be a monad on Set, and (X, E) be an algebraic presentation for it via
[ TZ,E = M.

Definitions

A monad lifting of M to Met is a monad M : Met — Met whose functor, unit and
multiplication coincide with those of M after applying U : Met — Set.

A quantitative extension of E is a quantitative algebraic theory E on the same
signature X satisfying for all X € Metand s,t € Ty X,

Xks=tcE<=XFs=tcL.

Theorem
There is a correspondence between monad liftings of M and quantitative extensions of E.
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» The equivalence R
XFs=teE<=Xks=teE

really says that =p==3, so the functors Ty ¢ and TZ ¢ agree on sets.

20/24



Extension to Lifting (Easy)

» The equivalence R
XFs=teE<=Xks=teE

really says that =p==3, so the functors Ty ¢ and TZ ¢ agree on sets.

» It follows from the syntactic definitions that the units and multiplications also
coincide, hence Ty 7 is a monad lifting of Ty r.

20/24



Extension to Lifting (Easy)

» The equivalence R
XFs=teE<=Xks=teE

really says that =p==3, so the functors Ty ¢ and TZ ¢ agree on sets.

» It follows from the syntactic definitions that the units and multiplications also
coincide, hence Ty 7 is a monad lifting of Ty r.

» Via the isomorphism p : Ty g = M, we can construct the monad lifting by

M(X,d) = (MX,d), where d(m,m') = dz(p " 'm,p7'm’).
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Lifting to Extension

» Put some equations in E:

Forall XFs=t€E add X, Fs=ttoL.

» Put some quantitative equations in E:

Forall (X,d) € Metand s, t € Ty X, add (X,d) s =l tto E.

slelt])

> Show that nothing else is entailed by exhibiting M(X) as the free Y-algebra
satisfying E generated by X.
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To Be Done

> Make the result more categorical in flavor.
» What about infinitary theories?
» What about composing monads?

» Further simplify the entry point to quantitative algebraic reasoning.
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Merci !
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