Ralph Sarkis

ENS de Lyon

September 14th, 2023

Outline

Universal Algebra

Universal Quantitative Algebra

Monad Presentations

Conclusion

A **signature** Σ is a set of operation symbols, each with an arity, we write op : $n \in \Sigma$ for an operation of arity $n \in \mathbb{N}$ belonging to Σ .

Universal Algebra

Definitions

A **signature** Σ is a set of operation symbols, each with an arity, we write op : $n \in \Sigma$ for an operation of arity $n \in \mathbb{N}$ belonging to Σ . A Σ -algebra is a set A equipped with an interpretation $[op] : A^n \to A$ for every op : $n \in \Sigma$.

A **signature** Σ is a set of operation symbols, each with an arity, we write op : $n \in \Sigma$ for an operation of arity $n \in \mathbb{N}$ belonging to Σ . A Σ -algebra is a set A equipped with an interpretation $[\![op]\!] : A^n \to A$ for every op : $n \in \Sigma$.

Examples

A (join)-semilattice is a set *S* equipped with an associative, commutative and idempotent binary operation ⊕ : *S* × *S* → *S*. It is a Σ_P-algebra where Σ_P = {⊕ : 2} with some nice properties.

A **signature** Σ is a set of operation symbols, each with an arity, we write op : $n \in \Sigma$ for an operation of arity $n \in \mathbb{N}$ belonging to Σ . A Σ -algebra is a set A equipped with an interpretation $[\![op]\!] : A^n \to A$ for every op : $n \in \Sigma$.

Examples

- A (join)-semilattice is a set *S* equipped with an associative, commutative and idempotent binary operation ⊕ : *S* × *S* → *S*. It is a Σ_P-algebra where Σ_P = {⊕ : 2} with some nice properties.
- A convex algebra is a set *C* equipped with binary operations +_p : *C* × *C* → *C* for every *p* ∈ [0,1] that satisfy *skewed* associativity, commutativity, and idempotence. It is a Σ_D-algebra where Σ_D = {+_p : 2 | *p* ∈ [0,1]} with some nice properties.

A **signature** Σ is a set of operation symbols, each with an arity, we write op : $n \in \Sigma$ for an operation of arity $n \in \mathbb{N}$ belonging to Σ . A Σ -algebra is a set A equipped with an interpretation $[op] : A^n \to A$ for every op : $n \in \Sigma$.

Examples

- A (join)-semilattice is a set *S* equipped with an associative, commutative and idempotent binary operation ⊕ : *S* × *S* → *S*. It is a Σ_P-algebra where Σ_P = {⊕ : 2} with some nice properties.
- A **convex algebra** is a set *C* equipped with binary operations $+_p : C \times C \rightarrow C$ for every $p \in [0, 1]$ that satisfy *skewed* associativity, commutativity, and idempotence. It is a Σ_D -algebra where $\Sigma_D = \{+_p : 2 \mid p \in [0, 1]\}$ with some nice properties.
- A **pointed set** is a set *X* equipped with a constant $x \in X$ that we can identify with a function $x : X^0 \to X$. It is a Σ_{-+1} -algebra where $\Sigma_{-+1} = \{ \star : 0 \}$.

The set of Σ -terms over a set X is defined inductively:

$$\frac{x \in X}{x \in T_{\Sigma}X} \qquad \frac{t_1 \in T_{\Sigma}X \quad \cdots \quad t_n \in T_{\Sigma}X}{\mathsf{op}(t_1, \dots, t_n) \in T_{\Sigma}X}$$

The set of Σ -terms over a set *X* is defined inductively:

$$\frac{x \in X}{x \in T_{\Sigma}X} \qquad \frac{t_1 \in T_{\Sigma}X \quad \cdots \quad t_n \in T_{\Sigma}X}{\mathsf{op}(t_1, \dots, t_n) \in T_{\Sigma}X}$$

The interpretation of operations in an algebra *A* lifts to terms of $T_{\Sigma}A$:

 $\forall a \in A, \llbracket a \rrbracket = a \quad \forall t_1, \dots, t_n \in T_{\Sigma}A, \mathsf{op} : n \in \Sigma, \llbracket \mathsf{op}(t_1, \dots, t_n) \rrbracket = \llbracket \mathsf{op} \rrbracket(\llbracket t_1 \rrbracket, \dots, \llbracket t_n \rrbracket).$

The set of Σ -terms over a set *X* is defined inductively:

$$\frac{x \in X}{x \in T_{\Sigma}X} \qquad \frac{t_1 \in T_{\Sigma}X \quad \cdots \quad t_n \in T_{\Sigma}X}{\mathsf{op}(t_1, \dots, t_n) \in T_{\Sigma}X}$$

The interpretation of operations in an algebra *A* lifts to terms of $T_{\Sigma}A$:

 $\forall a \in A, \llbracket a \rrbracket = a \quad \forall t_1, \dots, t_n \in T_{\Sigma}A, \mathsf{op} : n \in \Sigma, \llbracket \mathsf{op}(t_1, \dots, t_n) \rrbracket = \llbracket \mathsf{op} \rrbracket(\llbracket t_1 \rrbracket, \dots, \llbracket t_n \rrbracket).$

In algebra, we often prove things like: "Suppose $g = g^n$, then ..."

The set of Σ -terms over a set *X* is defined inductively:

$$\frac{x \in X}{x \in T_{\Sigma} X} \qquad \frac{t_1 \in T_{\Sigma} X \cdots t_n \in T_{\Sigma} X}{\mathsf{op}(t_1, \dots, t_n) \in T_{\Sigma} X}$$

The interpretation of operations in an algebra *A* lifts to terms of $T_{\Sigma}A$:

 $\forall a \in A, \llbracket a \rrbracket = a \quad \forall t_1, \dots, t_n \in T_{\Sigma}A, \mathsf{op} : n \in \Sigma, \llbracket \mathsf{op}(t_1, \dots, t_n) \rrbracket = \llbracket \mathsf{op} \rrbracket(\llbracket t_1 \rrbracket, \dots, \llbracket t_n \rrbracket).$

In algebra, we often prove things like: "Suppose $g = g^n$, then ..." Thus, we ask: Question

Let $s, t \in T_{\Sigma}A$, if we know [s] = [t], what else can we derive?

$$\overline{X \vdash t = t}$$
 Refl

$$\underline{X \vdash t = t}$$
 Refl $\underline{X \vdash s = t}$ Sym

$$\frac{X \vdash s = t}{X \vdash t = s} \operatorname{Refl} \qquad \frac{X \vdash s = t}{X \vdash t = s} \operatorname{Sym} \qquad \frac{X \vdash s = t}{X \vdash s = u} \operatorname{Trans}$$

$$\frac{X \vdash s = t}{X \vdash t = s} \operatorname{Sym} \qquad \frac{X \vdash s = t}{X \vdash s = u} \operatorname{Trans}$$

$$\frac{\mathsf{op}: n \in \Sigma \qquad \forall i \in [n], X \vdash s_i = t_i}{X \vdash \mathsf{op}(s_1, \dots, s_n) = \mathsf{op}(t_1, \dots, t_n)} \operatorname{Cong}$$

$$\frac{X \vdash s = t}{X \vdash t = s} \operatorname{Refl} \qquad \frac{X \vdash s = t}{X \vdash t = s} \operatorname{Sym} \qquad \frac{X \vdash s = t}{X \vdash s = u} \operatorname{Trans}$$

$$\begin{array}{l} \mathsf{op}: n \in \Sigma \quad \forall i \in [n], X \vdash s_i = t_i \\ X \vdash \mathsf{op}(s_1, \dots, s_n) = \mathsf{op}(t_1, \dots, t_n) \end{array} \mathsf{Cong} \end{array}$$

$$\frac{\sigma: X \to T_{\Sigma}(Y) \qquad X \vdash s = t}{Y \vdash \sigma^*(s) = \sigma^*(t)} \operatorname{Sub}$$

$$\frac{X \vdash s = t}{X \vdash t = t} \operatorname{Refl} \qquad \frac{X \vdash s = t}{X \vdash t = s} \operatorname{Sym} \qquad \frac{X \vdash s = t}{X \vdash s = u} \operatorname{Trans}$$

$$\frac{\operatorname{op} : n \in \Sigma \quad \forall i \in [n], X \vdash s_i = t_i}{X \vdash \operatorname{op}(s_1, \dots, s_n) = \operatorname{op}(t_1, \dots, t_n)} \operatorname{Cong} \qquad \frac{\sigma : X \to T_{\Sigma}(Y) \quad X \vdash s = t}{Y \vdash \sigma^*(s) = \sigma^*(t)} \operatorname{Sub}$$

Theorem Equational logic is sound and complete.

Theorem

There is a correspondence between algebraic theories (a signature Σ and axioms E closed under equational logic) and finitary monads $T_{\Sigma,E}$: **Set** \rightarrow **Set** such that Σ -algebras satisfying E correspond to $T_{\Sigma,E}$ -algebras.

Theorem

There is a correspondence between algebraic theories (a signature Σ and axioms E closed under equational logic) and finitary monads $T_{\Sigma,E}$: **Set** \rightarrow **Set** such that Σ -algebras satisfying E correspond to $T_{\Sigma,E}$ -algebras.

Examples

A semilattice is an algebra for the non-empty finite powerset monad
 P : Set → Set.

Theorem

There is a correspondence between algebraic theories (a signature Σ and axioms E closed under equational logic) and finitary monads $T_{\Sigma,E}$: **Set** \rightarrow **Set** such that Σ -algebras satisfying E correspond to $T_{\Sigma,E}$ -algebras.

Examples

- A semilattice is an algebra for the non-empty finite powerset monad
 P : Set → Set.
- A convex algebra is an algebra for the finitely supported distribution monad
 D : Set → Set.

Theorem

There is a correspondence between algebraic theories (a signature Σ and axioms E closed under equational logic) and finitary monads $T_{\Sigma,E}$: **Set** \rightarrow **Set** such that Σ -algebras satisfying E correspond to $T_{\Sigma,E}$ -algebras.

Examples

- A semilattice is an algebra for the non-empty finite powerset monad
 P : Set → Set.
- A convex algebra is an algebra for the finitely supported distribution monad
 D : Set → Set.
- A pointed set is an algebra for the maybe monad + 1: Set \rightarrow Set.

Universal Algebra

Universal Quantitative Algebra

Monad Presentations

Conclusion

We switch from the category **Set** to **Met**.

We switch from the category **Set** to **Met**.

Definition

A **quantitative** Σ **-algebra** is a metric space (A, d) and a Σ -algebra on the same carrier, i.e. interpretations $[op] : A^n \to A$ for every op $: n \in \Sigma$.

We switch from the category **Set** to **Met**.

Definition

A **quantitative** Σ **-algebra** is a metric space (A, d) and a Σ -algebra on the same carrier, i.e. interpretations $[op] : A^n \to A$ for every op $: n \in \Sigma$.

Example

Let $\Sigma_{\mathcal{D}} = \{+_p : 2\}_{p \in (0,1)}$ and (A, d) be a metric space. We denote by $(\mathcal{D}A, \hat{d})$ the space of finite probability distributions on A with the Kantorovich metric.

We switch from the category **Set** to **Met**.

Definition

A **quantitative** Σ **-algebra** is a metric space (A, d) and a Σ -algebra on the same carrier, i.e. interpretations $[op] : A^n \to A$ for every op $: n \in \Sigma$.

Example

Let $\Sigma_{\mathcal{D}} = \{+_p : 2\}_{p \in (0,1)}$ and (A, d) be a metric space. We denote by $(\mathcal{D}A, \hat{d})$ the space of finite probability distributions on A with the Kantorovich metric. The interpretations

$$\llbracket +_p \rrbracket : \mathcal{D}A \times \mathcal{D}A \to \mathcal{D}A = (\varphi, \psi) \mapsto p\varphi + (1-p)\psi$$

yield a quantitative $\Sigma_{\mathcal{D}}$ -algbera.

We can now work with more information on terms: equality and distance. Thus we ask:

Question

Let (A, d) *be a metric space and* $s, t \in T_{\Sigma}A$ *. If we know* $d(\llbracket s \rrbracket, \llbracket t \rrbracket) \leq \varepsilon$ *, what else can we derive?*

We can now work with more information on terms: equality and distance. Thus we ask:

Question

Let (A, d) *be a metric space and* $s, t \in T_{\Sigma}A$ *. If we know* $d(\llbracket s \rrbracket, \llbracket t \rrbracket) \leq \varepsilon$ *, what else can we derive?*

The information on distance is now also relevant on variables, e.g.:

Question

If we know $d([s], [t]) \le \varepsilon$ *but only if the variables x and y are at distance* δ *, what else can we derive?*

$$\mathbf{X} \vdash s =_{\infty} t$$

$$\overline{\mathbf{X} \vdash s =_{\infty} t}$$
 $\overline{\mathbf{X} \vdash x =_{\varepsilon} y}$ Vars

$$\frac{d_{\mathbf{X}}(x,y) \leq \varepsilon}{\mathbf{X} \vdash s =_{\omega} t} \quad \frac{d_{\mathbf{X}}(x,y) \leq \varepsilon}{\mathbf{X} \vdash x =_{\varepsilon} y} \text{ Vars } \quad \frac{\mathbf{X} \vdash s =_{\varepsilon} t \quad \varepsilon \leq \varepsilon'}{\mathbf{X} \vdash s =_{\varepsilon'} t} \text{ Max}$$

$$\frac{d_{\mathbf{X}}(x,y) \leq \varepsilon}{\mathbf{X} \vdash s =_{\varepsilon} t} \quad \frac{d_{\mathbf{X}}(x,y) \leq \varepsilon}{\mathbf{X} \vdash x =_{\varepsilon} y} \text{ Vars } \quad \frac{\mathbf{X} \vdash s =_{\varepsilon} t \quad \varepsilon \leq \varepsilon'}{\mathbf{X} \vdash s =_{\varepsilon'} t} \text{ Max} \\
\frac{\forall i, \mathbf{X} \vdash s =_{\varepsilon_i} t \quad \varepsilon = \inf_i \varepsilon_i}{\mathbf{X} \vdash s =_{\varepsilon} t} \text{ OC}$$

$$\frac{\mathbf{X} \vdash s =_{\infty} t}{\mathbf{X} \vdash s =_{\varepsilon} t} \quad \frac{d_{\mathbf{X}}(x, y) \leq \varepsilon}{\mathbf{X} \vdash x =_{\varepsilon} y} \text{ Vars } \quad \frac{\mathbf{X} \vdash s =_{\varepsilon} t \quad \varepsilon \leq \varepsilon'}{\mathbf{X} \vdash s =_{\varepsilon'} t} \text{ Max} \\
\frac{\forall i, \mathbf{X} \vdash s =_{\varepsilon_i} t \quad \varepsilon = \inf_i \varepsilon_i}{\mathbf{X} \vdash s =_{\varepsilon} t} \text{ OC} \\
\frac{\mathbf{X} \vdash s = t}{\mathbf{X} \vdash t =_{\varepsilon} u} \mathbf{C}_{\ell}$$

$$\frac{\mathbf{X} \vdash s =_{\infty} t}{\mathbf{X} \vdash s =_{\varepsilon} t} \quad \frac{d_{\mathbf{X}}(x, y) \leq \varepsilon}{\mathbf{X} \vdash x =_{\varepsilon} y} \text{ Vars } \quad \frac{\mathbf{X} \vdash s =_{\varepsilon} t \quad \varepsilon \leq \varepsilon'}{\mathbf{X} \vdash s =_{\varepsilon'} t} \text{ Max}$$

$$\frac{\forall i, \mathbf{X} \vdash s =_{\varepsilon_{i}} t \quad \varepsilon = \inf_{i} \varepsilon_{i}}{\mathbf{X} \vdash s =_{\varepsilon} t} \text{ OC}$$

$$\frac{\mathbf{X} \vdash s = t \quad \mathbf{X} \vdash s =_{\varepsilon} u}{\mathbf{X} \vdash t =_{\varepsilon} u} C_{\ell} \quad \frac{\mathbf{X} \vdash s = t \quad \mathbf{X} \vdash u =_{\varepsilon} s}{\mathbf{X} \vdash u =_{\varepsilon} t} C_{r}$$

$$\frac{d_{\mathbf{X}}(x,y) \leq \varepsilon}{\mathbf{X} \vdash s =_{\varepsilon} t} \quad \frac{d_{\mathbf{X}}(x,y) \leq \varepsilon}{\mathbf{X} \vdash x =_{\varepsilon} y} \text{ Vars } \qquad \frac{\mathbf{X} \vdash s =_{\varepsilon} t \quad \varepsilon \leq \varepsilon'}{\mathbf{X} \vdash s =_{\varepsilon'} t} \text{ Max} \\
\frac{\forall i, \mathbf{X} \vdash s =_{\varepsilon} i}{\mathbf{X} \vdash s =_{\varepsilon} t} \quad c = \inf_{i} \varepsilon_{i} \\
\frac{\forall i, \mathbf{X} \vdash s =_{\varepsilon} u}{\mathbf{X} \vdash s =_{\varepsilon} t} \quad c_{\varepsilon} = \frac{\mathbf{X} \vdash s = t}{\mathbf{X} \vdash u =_{\varepsilon} s} \quad c_{\tau} \\
\frac{\mathbf{X} \vdash s = t}{\mathbf{X} \vdash t =_{\varepsilon} u} \quad c_{\ell} \quad \frac{\mathbf{X} \vdash s = t}{\mathbf{X} \vdash u =_{\varepsilon} t} \quad c_{\tau} \\
\frac{\sigma : \mathbf{X} \rightarrow T_{\Sigma} \mathbf{Y} \quad \mathbf{X} \vdash s =_{\varepsilon} t}{\mathbf{Y} \vdash \sigma^{*}(s) =_{\varepsilon} \sigma^{*}(t)} \text{ Sub}$$

We introduce a binary predicate $=_{\varepsilon}$ which we interpret as the two inputs having distance *at most* ε , and the context (variables) is now a metric space. We add:

$$\begin{array}{c} \overline{\mathbf{X} \vdash s =_{\infty} t} & \overline{\mathbf{A}_{\mathbf{X}}(x,y) \leq \varepsilon} \\ \overline{\mathbf{X} \vdash x =_{\varepsilon} y} \\ \overline{\mathbf{X} \vdash x =_{\varepsilon} y} \\ \overline{\mathbf{X} \vdash s =_{\varepsilon'} t} \\ \overline{\mathbf{X} \vdash s =_{\varepsilon'} t} \\ \overline{\mathbf{X} \vdash s =_{\varepsilon'} t} \\ \overline{\mathbf{X} \vdash s =_{\varepsilon} t} \\ \overline{\mathbf{X} \vdash s =_{\varepsilon} u} \\ \overline{\mathbf{X} \vdash t =_{\varepsilon} t} \\ \overline{\mathbf{X}$$

 $\frac{\mathbf{X} \vdash s =_{\varepsilon} t}{\mathbf{X} \vdash t =_{\varepsilon} s}$

$$\frac{\mathbf{X} \vdash s =_{\infty} t}{\mathbf{X} \vdash s =_{\varepsilon} t} \quad \frac{\mathbf{d}_{\mathbf{X}}(x, y) \leq \varepsilon}{\mathbf{X} \vdash x =_{\varepsilon} y} \text{ Vars } \qquad \frac{\mathbf{X} \vdash s =_{\varepsilon} t \quad \varepsilon \leq \varepsilon'}{\mathbf{X} \vdash s =_{\varepsilon'} t} \text{ Max} \\
\frac{\forall i, \mathbf{X} \vdash s =_{\varepsilon} t \quad \varepsilon = \inf_{i} \varepsilon_{i}}{\mathbf{X} \vdash s =_{\varepsilon} t} \text{ OC} \\
\frac{\mathbf{X} \vdash s = t \quad \mathbf{X} \vdash s =_{\varepsilon} u}{\mathbf{X} \vdash t =_{\varepsilon} u} \text{ C}_{\ell} \quad \frac{\mathbf{X} \vdash s = t \quad \mathbf{X} \vdash u =_{\varepsilon} s}{\mathbf{X} \vdash u =_{\varepsilon} t} \text{ C}_{r} \\
\frac{\sigma : \mathbf{X} \rightarrow T_{\Sigma} \mathbf{Y} \quad \mathbf{X} \vdash s =_{\varepsilon} t \quad \mathbf{Y} \vdash \sigma(x) =_{d_{\mathbf{X}}(x,x')} \sigma(x')}{\mathbf{Y} \vdash \sigma^{*}(s) =_{\varepsilon} \sigma^{*}(t)} \text{ Sub}$$

$$\frac{\mathbf{X} \vdash s =_{\varepsilon} t}{\mathbf{X} \vdash t =_{\varepsilon} s} \qquad \mathbf{X} \vdash t =_{0} t$$

$$\frac{\mathbf{X} \vdash s =_{\infty} t}{\mathbf{X} \vdash s =_{\varepsilon} t} \quad \frac{\mathbf{d}_{\mathbf{X}}(x, y) \leq \varepsilon}{\mathbf{X} \vdash x =_{\varepsilon} y} \text{ Vars } \qquad \frac{\mathbf{X} \vdash s =_{\varepsilon} t \quad \varepsilon \leq \varepsilon'}{\mathbf{X} \vdash s =_{\varepsilon'} t} \text{ Max} \\
\frac{\forall i, \mathbf{X} \vdash s =_{\varepsilon} t \quad \varepsilon = \inf_{i} \varepsilon_{i}}{\mathbf{X} \vdash s =_{\varepsilon} t} \text{ OC} \\
\frac{\mathbf{X} \vdash s = t \quad \mathbf{X} \vdash s =_{\varepsilon} u}{\mathbf{X} \vdash t =_{\varepsilon} u} \mathbf{C}_{\ell} \quad \frac{\mathbf{X} \vdash s = t \quad \mathbf{X} \vdash u =_{\varepsilon} s}{\mathbf{X} \vdash u =_{\varepsilon} t} \mathbf{C}_{r} \\
\frac{\sigma : \mathbf{X} \rightarrow T_{\Sigma} \mathbf{Y} \quad \mathbf{X} \vdash s =_{\varepsilon} t \quad \mathbf{Y} \vdash \sigma(x) =_{d_{\mathbf{X}}(x,x')} \sigma(x')}{\mathbf{Y} \vdash \sigma^{*}(s) =_{\varepsilon} \sigma^{*}(t)} \text{ Sub}$$

$$\frac{\mathbf{X} \vdash s =_{\varepsilon} t}{\mathbf{X} \vdash t =_{\varepsilon} s} \quad \frac{\mathbf{X} \vdash s =_{0} t}{\mathbf{X} \vdash s = t}$$

$$\frac{\mathbf{X} \vdash s =_{\infty} t}{\mathbf{X} \vdash s =_{\varepsilon} t} \quad \frac{d_{\mathbf{X}}(x, y) \leq \varepsilon}{\mathbf{X} \vdash x =_{\varepsilon} y} \text{ Vars } \qquad \frac{\mathbf{X} \vdash s =_{\varepsilon} t \quad \varepsilon \leq \varepsilon'}{\mathbf{X} \vdash s =_{\varepsilon'} t} \text{ Max} \\
\frac{\forall i, \mathbf{X} \vdash s =_{\varepsilon} t}{\mathbf{X} \vdash s =_{\varepsilon} t} \quad \varepsilon = \inf_{i} \varepsilon_{i} \\
\frac{\mathbf{X} \vdash s = t}{\mathbf{X} \vdash s =_{\varepsilon} u} \text{ C}_{\ell} \qquad \frac{\mathbf{X} \vdash s = t \quad \mathbf{X} \vdash u =_{\varepsilon} s}{\mathbf{X} \vdash u =_{\varepsilon} t} \text{ C}_{r} \\
\frac{\sigma : \mathbf{X} \rightarrow T_{\Sigma} \mathbf{Y} \quad \mathbf{X} \vdash s =_{\varepsilon} t \quad \mathbf{Y} \vdash \sigma(x) =_{d_{\mathbf{X}}(x, x')} \sigma(x')}{\mathbf{Y} \vdash \sigma^{*}(s) =_{\varepsilon} \sigma^{*}(t)} \text{ Sub}$$

$$\frac{\mathbf{X} \vdash s =_{\varepsilon} t}{\mathbf{X} \vdash t =_{\varepsilon} s} \quad \frac{\mathbf{X} \vdash s =_{0} t}{\mathbf{X} \vdash s = t} \quad \frac{\mathbf{X} \vdash s =_{\varepsilon} t}{\mathbf{X} \vdash s = t} \quad \frac{\mathbf{X} \vdash s =_{\varepsilon} t}{\mathbf{X} \vdash s =_{\varepsilon + \varepsilon'} u}$$

$$\frac{\mathbf{X} \vdash s =_{\infty} t}{\mathbf{X} \vdash s =_{\varepsilon} t} \quad \frac{d_{\mathbf{X}}(x, y) \leq \varepsilon}{\mathbf{X} \vdash x =_{\varepsilon} y} \text{ Vars } \qquad \frac{\mathbf{X} \vdash s =_{\varepsilon} t \quad \varepsilon \leq \varepsilon'}{\mathbf{X} \vdash s =_{\varepsilon'} t} \text{ Max} \\
\frac{\forall i, \mathbf{X} \vdash s =_{\varepsilon_{i}} t \quad \varepsilon = \inf_{i} \varepsilon_{i}}{\mathbf{X} \vdash s =_{\varepsilon} t} \text{ OCo} \\
\frac{\mathbf{X} \vdash s = t \quad \mathbf{X} \vdash s =_{\varepsilon} u}{\mathbf{X} \vdash t =_{\varepsilon} u} C_{\ell} \quad \frac{\mathbf{X} \vdash s = t \quad \mathbf{X} \vdash u =_{\varepsilon} s}{\mathbf{X} \vdash u =_{\varepsilon} t} C_{r} \\
\frac{\sigma : \mathbf{X} \rightarrow T_{\Sigma} \mathbf{Y} \quad \mathbf{X} \vdash s =_{(\varepsilon)} t \quad \mathbf{Y} \vdash \sigma(x) =_{d_{\mathbf{X}}(x,x')} \sigma(x')}{\mathbf{Y} \vdash \sigma^{*}(s) =_{(\varepsilon)} \sigma^{*}(t)} \text{ Sub}$$

$$\left(\begin{array}{cc} \underline{\mathbf{X} \vdash s =_{\varepsilon} t} \\ \overline{\mathbf{X} \vdash t =_{\varepsilon} s} \end{array} \quad \overline{\mathbf{X} \vdash t =_{0} t} \quad \frac{\mathbf{X} \vdash s =_{0} t}{\mathbf{X} \vdash s = t} \quad \frac{\mathbf{X} \vdash s =_{\varepsilon} t}{\mathbf{X} \vdash s =_{\varepsilon'} u} \right)$$

Theorem

Quantitative equational logic is sound and complete.

Hausdorff Lifting

The Hausdorff lifting of the powerset monad $\widehat{\mathcal{P}}_{\mathsf{H}}$ is defined by

$$(X,d) \mapsto (\mathcal{P}X,d_{\mathsf{H}}) \text{ where } d_{\mathsf{H}}(S,T) = \max\left\{\max_{x \in S} \min_{y \in T} d(x,y), \max_{y \in T} \min_{x \in S} d(x,y)\right\}.$$

The unit and multiplication are the same as those of \mathcal{P} .

Hausdorff Lifting

The Hausdorff lifting of the powerset monad $\widehat{\mathcal{P}}_{H}$ is defined by

$$(X,d) \mapsto (\mathcal{P}X,d_{\mathsf{H}}) \text{ where } d_{\mathsf{H}}(S,T) = \max\left\{\max_{x \in S} \min_{y \in T} d(x,y), \max_{y \in T} \min_{x \in S} d(x,y)\right\}.$$

The unit and multiplication are the same as those of \mathcal{P} . Algebras for $\widehat{\mathcal{P}}_{\mathsf{H}}$ correspond to quantitative $\Sigma_{\mathcal{P}}$ -algebras satisfying:

$$x \vdash x \oplus x = x$$
 (idempotent)

$$x, y \vdash x \oplus y = y \oplus x$$
 (commutative)

$$x, y, z \vdash x \oplus (y \oplus z) = (x \oplus y) \oplus z$$
 (associative)

$$x =_{\varepsilon} x', y =_{\varepsilon'} y' \vdash x \oplus y =_{\max\{\varepsilon, \varepsilon'\}} x' \oplus y'$$
 (Hausdorff)

Hausdorff Lifting

The Hausdorff lifting of the powerset monad $\widehat{\mathcal{P}}_{H}$ is defined by

$$(X,d) \mapsto (\mathcal{P}X,d_{\mathsf{H}}) \text{ where } d_{\mathsf{H}}(S,T) = \max\left\{\max_{x \in S} \min_{y \in T} d(x,y), \max_{y \in T} \min_{x \in S} d(x,y)\right\}.$$

The unit and multiplication are the same as those of \mathcal{P} . Algebras for $\widehat{\mathcal{P}}_{H}$ correspond to quantitative $\Sigma_{\mathcal{P}}$ -algebras satisfying:

$$\begin{array}{l} x \vdash x \oplus x = x & (\text{idempotent}) \\ x, y \vdash x \oplus y = y \oplus x & (\text{commutative}) \\ x, y, z \vdash x \oplus (y \oplus z) = (x \oplus y) \oplus z & (\text{associative}) \\ x =_{\varepsilon} x', y =_{\varepsilon'} y' \vdash x \oplus y =_{\max\{\varepsilon,\varepsilon'\}} x' \oplus y' & (\text{Hausdorff}) \end{array}$$

In all these algebras, \oplus is a nonexpansive operation $(X, d)^2 \rightarrow (X, d)$.

After removing that last quantitative equation, we get algebras for the monad $\widehat{\mathcal{P}}$ defined by:

$$(X,d) \mapsto (\mathcal{P}X,\hat{d}) \text{ where } \hat{d}(S,T) = \begin{cases} 0 & S = T \\ d(x,y) & S = \{x\} \text{ and } T = \{y\} \\ 1 & \text{otherwise} \end{cases}$$

ŁK Lifting

The Łukaszyk–Karmowski lifting of the distribution monad \widehat{D}_{LK} is defined by: $(X,d) \mapsto (\mathcal{D}X, d_{LK})$ where $d_{LK}(\varphi, \psi) = \sum_{x,x' \in X} \varphi(x)\psi(x')d(x,x').$

The unit and multiplication are the same as those of \mathcal{D} .

ŁK Lifting

The Łukaszyk–Karmowski lifting of the distribution monad \widehat{D}_{LK} is defined by:

$$(X, d) \mapsto (\mathcal{D}X, d_{\mathrm{LK}})$$
 where $d_{\mathrm{LK}}(\varphi, \psi) = \sum_{x, x' \in X} \varphi(x) \psi(x') d(x, x').$

The unit and multiplication are the same as those of \mathcal{D} . Algebras for $\widehat{\mathcal{D}}_{LK}$ correspond to quantitative $\Sigma_{\mathcal{D}}$ -algebras satsifying:

$$\begin{aligned} x \vdash x +_p x &= x & (\text{idempotent}) \\ x, y \vdash x +_p y &= y +_{1-p} x & (\text{skew comm.}) \\ x, y, z \vdash (x +_q y) +_p z &= x +_{pq} (y +_{\frac{p(1-q)}{1-pq}} z) & (\text{skew assoc.}) \\ x &=_{\varepsilon_1} y, x =_{\varepsilon_2} z \vdash x =_{p\varepsilon_1 + (1-p)\varepsilon_2} y +_p z & (\text{LK}) \end{aligned}$$

Universal Algebra

Universal Quantitative Algebra

Monad Presentations

Conclusion

Given an algebraic theory (Σ, E) , the free algebra monad $T_{\Sigma,E}$ is given by

$$X \mapsto T_{\Sigma}X / \equiv_E$$
, where $\equiv_E = \{(s, t) \mid X \vdash s = t \in E\}$.

A Σ -algebra satisfying *E* is the same thing as a $T_{\Sigma,E}$ -algebra.

Given an algebraic theory (Σ, E) , the free algebra monad $T_{\Sigma,E}$ is given by

$$X \mapsto T_{\Sigma}X / \equiv_E$$
, where $\equiv_E = \{(s, t) \mid X \vdash s = t \in E\}$.

A Σ -algebra satisfying *E* is the same thing as a $T_{\Sigma,E}$ -algebra.

Definition

A monad *M* on **Set** is **presented** by (Σ, E) if there is a monad isomorphism $\rho : T_{\Sigma,E} \cong M$.

Given a quantitative algebraic theory (Σ, \hat{E}) , the free quantitative algebra monad $\hat{T}_{\Sigma,\hat{E}}$ is given by

$$\mathbf{X} \mapsto (T_{\Sigma}X/\equiv_{\widehat{E}}, d_{\widehat{E}}), \text{ where } \qquad \begin{array}{l} \equiv_{\widehat{E}} = \{(s,t) \mid \mathbf{X} \vdash s = t\} \\ d_{\widehat{E}}([s], [t]) = \inf \{\varepsilon \in [0,\infty] \mid \mathbf{X} \vdash s =_{\varepsilon} t\}. \end{array}$$

A quantitative Σ -algebra satisfying \widehat{E} is the same thing as a $\widehat{T}_{\Sigma,\widehat{E}}$ -algebra.

Given a quantitative algebraic theory (Σ, \hat{E}) , the free quantitative algebra monad $\hat{T}_{\Sigma,\hat{E}}$ is given by

$$\mathbf{X} \mapsto (T_{\Sigma}X/\equiv_{\widehat{E}}, d_{\widehat{E}}), \text{ where } \qquad \begin{array}{c} \equiv_{\widehat{E}} = \{(s,t) \mid \mathbf{X} \vdash s = t\} \\ d_{\widehat{E}}([s], [t]) = \inf \{\varepsilon \in [0,\infty] \mid \mathbf{X} \vdash s =_{\varepsilon} t\}. \end{array}$$

A quantitative Σ -algebra satisfying \widehat{E} is the same thing as a $\widehat{T}_{\Sigma,\widehat{E}}$ -algebra.

Definition

A monad \widehat{M} on **Met** is **presented** by (Σ, \widehat{E}) if there is a monad isomorphism $\widehat{\rho} : \widehat{T}_{\Sigma,\widehat{E}} \cong \widehat{M}$.

Lifting Presentations

Let (M, η, μ) be a monad on **Set**, and (Σ, E) be an algebraic presentation for it via $\rho : T_{\Sigma,E} \cong M$.

Definitions

A **monad lifting** of *M* to **Met** is a monad \widehat{M} : **Met** \rightarrow **Met** whose functor, unit and multiplication coincide with those of *M* after applying U : **Met** \rightarrow **Set**.

Lifting Presentations

Let (M, η, μ) be a monad on **Set**, and (Σ, E) be an algebraic presentation for it via $\rho : T_{\Sigma,E} \cong M$.

Definitions

A **monad lifting** of *M* to **Met** is a monad \widehat{M} : **Met** \rightarrow **Met** whose functor, unit and multiplication coincide with those of *M* after applying U : **Met** \rightarrow **Set**. A **quantitative extension** of *E* is a quantitative algebraic theory \widehat{E} on the same signature Σ satisfying for all $\mathbf{X} \in$ **Met** and $s, t \in T_{\Sigma}X$,

$$X \vdash s = t \in E \iff \mathbf{X} \vdash s = t \in \widehat{E}.$$

Lifting Presentations

Let (M, η, μ) be a monad on **Set**, and (Σ, E) be an algebraic presentation for it via $\rho : T_{\Sigma,E} \cong M$.

Definitions

A **monad lifting** of *M* to **Met** is a monad \widehat{M} : **Met** \rightarrow **Met** whose functor, unit and multiplication coincide with those of *M* after applying U : **Met** \rightarrow **Set**. A **quantitative extension** of *E* is a quantitative algebraic theory \widehat{E} on the same signature Σ satisfying for all $\mathbf{X} \in$ **Met** and $s, t \in T_{\Sigma}X$,

$$X \vdash s = t \in E \iff \mathbf{X} \vdash s = t \in \widehat{E}.$$

Theorem

There is a correspondence between monad liftings of M and quantitative extensions of E.

Extension to Lifting (Easy)

► The equivalence

$$X \vdash s = t \in E \iff \mathbf{X} \vdash s = t \in \widehat{E}$$

really says that $\equiv_E \equiv_{\widehat{E}'}$, so the functors $T_{\Sigma,E}$ and $\widehat{T}_{\Sigma,\widehat{E}}$ agree on sets.

Extension to Lifting (Easy)

The equivalence

$$X \vdash s = t \in E \iff \mathbf{X} \vdash s = t \in \widehat{E}$$

really says that $\equiv_E \equiv \equiv_{\widehat{E}}$, so the functors $T_{\Sigma,E}$ and $\widehat{T}_{\Sigma,\widehat{E}}$ agree on sets.

It follows from the syntactic definitions that the units and multiplications also coincide, hence T
{Σ,Ê} is a monad lifting of T{Σ,E}.

Extension to Lifting (Easy)

The equivalence

$$X \vdash s = t \in E \iff \mathbf{X} \vdash s = t \in \widehat{E}$$

really says that $\equiv_E = \equiv_{\widehat{E}}$, so the functors $T_{\Sigma,E}$ and $\widehat{T}_{\Sigma,\widehat{E}}$ agree on sets.

- It follows from the syntactic definitions that the units and multiplications also coincide, hence T
 {Σ,Ê} is a monad lifting of T{Σ,E}.
- ► Via the isomorphism ρ : $T_{\Sigma,E} \cong M$, we can construct the monad lifting by

$$\widehat{M}(X,d) = (MX,\widehat{d}), \text{ where } \widehat{d}(m,m') = d_{\widehat{E}}(\rho^{-1}m,\rho^{-1}m').$$

Lifting to Extension

• Put some equations in \widehat{E} :

For all $X \vdash s = t \in E$, add $\mathbf{X}_{\perp} \vdash s = t$ to \widehat{E} .

Lifting to Extension

• Put some equations in \widehat{E} :

For all
$$X \vdash s = t \in E$$
, add $\mathbf{X}_{\perp} \vdash s = t$ to \widehat{E} .

• Put some quantitative equations in \widehat{E} :

For all
$$(X,d) \in \mathbf{Met}$$
 and $s, t \in T_{\Sigma}X$, add $(X,d) \vdash s =_{\widehat{d}(\rho[s],\rho[t])} t$ to \widehat{E} .

Lifting to Extension

• Put some equations in \widehat{E} :

For all
$$X \vdash s = t \in E$$
, add $\mathbf{X}_{\perp} \vdash s = t$ to \widehat{E} .

• Put some quantitative equations in \widehat{E} :

For all
$$(X, d) \in \mathbf{Met}$$
 and $s, t \in T_{\Sigma}X$, add $(X, d) \vdash s =_{\widehat{d}(\rho[s], \rho[t])} t$ to \widehat{E} .

Show that nothing else is entailed by exhibiting M
(X) as the free Σ-algebra satisfying Ê generated by X.

Universal Algebra

Universal Quantitative Algebra

Monad Presentations

Conclusion

- Make the result more categorical in flavor.
- What about infinitary theories?
- What about composing monads?
- Further simplify the entry point to quantitative algebraic reasoning.

Merci!