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Let’s Talk About Hummus

into a food processor into a food processor

add 300g strained cooked chickpeas add 300g strained cooked chickpeas
add 3 cloves of garlic add 4 cloves of garlic

add 75g tahini add 75g tahini

add 25mL lemon juice add 25mL lemon juice

blend for 5 minutes blend for 5 minutes

season to taste add 5 ice cubes

blend for 3 minutes
season to taste

Two different recipes but the result is hummus. We can compare the recipes:
» Does recipe 2 taste better than recipe 1?
» How different do the results taste?

» Which recipe takes longer?
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Program Equivalences and Distances

Example ([Neu51])

return fairCoin(H,T)

do
x = biasedCoin(H,T)
y = biasedCoin(H,T)
while (x == y)
return x
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Program Equivalences and Distances

Example ([Neu51])

do
x = biasedCoin(H,T)
return fairCoin(H,T) y = biasedCoin(H,T)
while (x == y)
return x

As long as the bias is consistent and not total (0% < p < 100%), the two programs
have the same behavior.
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Program Equivalences and Distances

Example (Guaranteed Termination)

i=0
do
i
return fairCoin(H,T) x
y
while

i+ 1
biasedCoin(H,T)

= biasedCoin(H,T)

(x == y) AND i <= 1000

return x

The second program is very close to being a fair coin flip.

5/45



Algebraic Semantics

We can see programming language syntax as operations on the set 3 of programs.

» Composition of two lines done with a semicolon:
;B X P — Psends (Cq,Cy) to Cq; Co.
» Random branching:

fairCoin : P? — P sends (C1,Cy) to fairCoin(Cq, Cp).
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Algebraic Semantics

We can see programming language syntax as operations on the set 3 of programs.

» Composition of two lines done with a semicolon:
;B X P — Psends (Cq,Cy) to Cq; Co.
» Random branching:
fairCoin : P? — P sends (C1,Cy) to fairCoin(Cq, Cp).

Equivalences of programs can be proven with algebraic reasoning.
With the axioms P; (Q; R) = (P;Q); R and fairCoin(P, P) = P, we can show

fairCoin(P; (Q;R), (P;Q);R) = P;(Q;R).
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Convex Algebras

Let us focus on one signature ¥ = {+,:2 | p € (0,1)}.

> Starting with a set of atomic instructions/states X = {x,y,z,w, - - - }, the
programs we can write are called X-terms, e.g.

X+py x (x+py) +4 (w+p2) (0 +qw) +pz) +4x).

» Understanding +, as a probabilistic choice (c.f. fairCoin and biasedCoin),
we postulate the axioms of convex algebras:

xhpx=x  xtpy=ytipx (Xhgy) +pz=x g (Y +pop 2)-
—Pq
» Two terms are equivalent if and only if they represent the same probability
distribution. We can reason algebraically about probability distributions!
fairCoin(H,T) = fairCoin(fairCoin(H,T), fairCoin(H,T))
H+05T = (H+05T) 405 (H+05T)

7/45



Convex Algebras

Let us focus on one signature ¥ = {+,:2 | p € (0,1)}.

> Starting with a set of atomic instructions/states X = {x,y,z,w, - - - }, the
programs we can write are called X-terms, e.g.

X+py x (x+py) +4 (w+p2) (0 +qw) +pz) +4x).

» Understanding +, as a probabilistic choice (c.f. fairCoin and biasedCoin),
we postulate the axioms of convex algebras:

Xtpx=x  X+py=Yy+ipx (x+qy)+pzzx+pq(y+ql;q)z)-
—Pq
» Two terms are equivalent if and only if they represent the same probability
distribution. We can reason algebraically about probability distributions!

fairCoin(H,T) = fairCoin(fairCoin(H,T), fairCoin(H,T))
H+o5T = (H+o5T) +o5 (H+05T)

Question
Can we reason algebraically about distances between distributions?
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Mardare, Panangaden, and Plotkin’s Answer

Working in Met: objects are metric spaces (X, dx : X x X — [0,00]), and
morphisms are nonexpansive functions: f : X — Y such that

dy(f(x),f(x')) < dx(x,x').
A convex algebra in Met is a metric space (A, d) with nonexpansive operations

+}7 : (A,dA) X (A,dA) — (A,dA).

T +o5Y

< max{e, 0}

Yy
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Mardare, Panangaden, and Plotkin’s Answer

Example

For any space (X, d), there is the Kantorovich metric on distributions (DX, d).
Convex combinations are nonexpansive operations (DX, dx)? — (DX, d).

(¢ +p¥)(x) =pe(x) + (1 —p)p(x).
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Mardare, Panangaden, and Plotkin’s Answer

Example

For any space (X, d), there is the Kantorovich metric on distributions (DX, d).
Convex combinations are nonexpansive operations (DX, dx)? — (DX, d).

(@ +p)(x) =pe(x) + (1 —p)p(x).
In addition to the previous equations, this convex algebra satisfies an implication:

X=X,y =5y FX4pY =perp ¥ +p ¥/

In [MPP16]:
» Replace d(x,y) < e with x =, y and build an implicational logic.
» Construct free algebras with (DX, +,,dx) as an example.
» Axiomatization of metrics, e.g. Kantorovich, Hausdorff, total variation.

In following papers, more results generalized from universal algebra: HSP
theorems, composite theories, monad-theory correspondences, more

axiomatizations, etc.
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Universal Quantitative Algebra
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Our Contributions

» Replace metric spaces with generalized metric spaces, this includes pseudo-,
quasi-, ultra-metric spaces (already in [MSV22]), posets, simple graphs,
probabilistic metric spaces, etc. (c.f. [FMS21]).

OResults from my manuscript will be numbered in this color.
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Our Contributions

» Replace metric spaces with generalized metric spaces, this includes pseudo-,
quasi-, ultra-metric spaces (already in [MSV22]), posets, simple graphs,
probabilistic metric spaces, etc. (c.f. [FMS21]).

> AIGHIOpEAHONE O BERBINARIRIEHOR (2150 in [MSV22]).

» Motivation in [Bac+18a; Bac+18b; Cas+21; DL+22].
+p (DX, dyk) x (DX, dpx) — (DX, dyk) is not nonexpansive.

» Provide a sound and complete logic that is not implicational (c.f. [FMS21]).

> Sufficient condition and construction for quantitative algebraic
presentations for monads on GMet.

OResults from my manuscript will be numbered in this color.
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[0, oo]-spaces

While metrics are relevant in practice, the essence of [MPP16]’s solution is in the
following isomorphism of categories.

Definition (|0, co|Spa)

A [0, 00]-space is a set A equipped with a distance functiondy : A x A — [0, 0].
Morphisms are nonexpansive maps: f : A — B such that dg(f(a),f(a')) < da(a,d’).

Definition ([0, co]Str)
A [0, oo]-structure is a set A equipped with a family of binary predicates
=, C A x A indexed by [0, o] satisfying

e<e = = C=p and =ipp5 = (Nees=¢)-

Morphisms are functions preserving the predicates: a =, 4’ = f(a) =, f(a’).
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[0, oo]-spaces

While metrics are relevant in practice, the essence of [MPP16]’s solution is in the
following isomorphism of categories.

Definition (|0, co|Spa)

A [0, 00]-space is a set A equipped with a distance functiondy : A x A — [0, 0].
Morphisms are nonexpansive maps: f : A — B such that dg(f(a),f(a')) < da(a,d’).

Definition ([0, co]Str)

A [0, oo]-structure is a set A equipped with a family of binary predicates
=, C A x A indexed by [0, o] satisfying

e < g = = C=y and =j5= (ﬂgeszg).
Morphisms are functions preserving the predicates: a =, 4’ = f(a) =, f(a’).

Proposition (2.21)
[0, 00]Spa =2 [0, co|Str by understanding a =, a’ as da(a,a’) < e
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L-spaces

This remains true for any complete lattice L, e.g. [0,00] or [0,1] or {0,1} (examples
are usually quantales).

Definition (LSpa, 2.11)

An L-space is a set A equipped with a distance functiondy : A x A — L.
Morphisms are nonexpansive maps: f : A — B such that dg(f(a),f(a')) < da(a,d’).

Definition (LStr, 2.19)

An L-structure is a set A equipped with a family of binary predicates = C A x A
indexed by L satisfying

e < g = = C=y and =jy5= (mgeszg).
Morphisms are functions preserving the predicates: a =, 4’ = f(a) =, f(a’).

Proposition (2.21)
LSpa = LStr by understanding a =, a’ as da(a,a’) < ¢
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Quantitative Algebras
Definition (3.1)

Given a signature X = {op; : 1;}ic], a quantitative X-algebra is an L-space (A,da),
and an interpretation [op]4 : A" — A in Set for every op : n € X.
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Given a signature X = {op; : 1;}ic], a quantitative X-algebra is an L-space (A,da),
and an interpretation [op]4 : A" — A in Set for every op : n € X.

QAlg(X) —— Alg(X)
. |
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Examples

» The metric space (DX, dx) with convex combinations +, : DX x DX — DX.
» The space (DX, dyx) with convex combinations.

» The real numbers R with the Euclidean metric d and all the ring operations.
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Quantitative Algebras

Definition (3.1)
Given a signature X = {op; : 1;}ic], a quantitative X-algebra is an L-space (A,da),
and an interpretation [op]4 : A" — A in Set for every op : n € X.

QAlg(X) —— Alg(X)
. |

LSpa —— Set

Examples

» The metric space (DX, dx) with convex combinations +, : DX x DX — DX.
» The space (DX, dyx) with convex combinations.

» The real numbers R with the Euclidean metric d and all the ring operations.
A Addition and multiplication 4, x : (R,d) x (R,d) — (IR, d) are not in Met.
1 + 1 = 2
1| 1] 2|
2 + 2 = 4 14/85
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Quantitative Equational Logic
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Quantitative Equations

A classical equation is a judgment X s = t, where s and t are X-terms over the
variables in a set X. An algebra A satisfies it if forall 1 : X — A, [s[4 = [t]4-
The meaning of X is universal quantification.

This is not enough for quantitative algebras. How can you assert that the

interpretation of f : 1 is a contraction: the distance between fx and fy is less than
the distance between x and y.
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Quantitative Equations

A classical equation is a judgment X s = t, where s and t are X-terms over the
variables in a set X. An algebra A satisfies it if forall 1 : X — A, [s[4 = [t]4-
The meaning of X is universal quantification.

This is not enough for quantitative algebras. How can you assert that the
interpretation of f : 1 is a contraction: the distance between fx and fy is less than
the distance between x and y.

Definition (3.8)
A quantitative equation is a judgment

(X,dx)Fs=t or (X,dx)Fs=t,

where (X, dx) is an L-space and s, t are X-terms over X.
It is satisfied by a quantitative algebra (A, [—]a,da) if for all nonexpansive
assignments 7 : (X,dx) — (A,da),

[sTh =[t1a  or  da([shy [f]4) <.
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Examples

2
£
=Cx iy Dn

T

(A/ dA)

Examples (£ = {f:1,+:2})
> If 2. fx =, fy is satisfied Ve, then [f]4 : (A, da) — (A, da) is nonexpansive.
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Examples

28 38,(5
€
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(A/dA)

Examples (£ = {f:1,+:2})
> If 2. fx =, fy is satisfied Ve, then [f]4 : (A, da) — (A, da) is nonexpansive.
> If 295 x+y =y + x is satisfied, then [+] 4 is nearly commutative.
» If 3.5 x =1 z is satisfied Ve, J, then the triangle inequality holds in (A, dy).
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Examples

2 38,(5
&€
o(Cx 2y e x%y%z
(A/dA)

Examples (X = {f:1,+:2})
> If 2. fx =, fy is satisfied Ve, then [f]4 : (A, da) — (A, da) is nonexpansive.
> If 205 x +y = y + x is satisfied, then [+] 4 is nearly commutative.
» If 3.5 x =1 z is satisfied Ve, J, then the triangle inequality holds in (A, dy).

Following the last example, we define GMet to be a full subcategory of QAlg(Q)
defined by a collection of quantitative equations, e.g. Met, UMet, Poset, Grph, etc.
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Some Rules

XkFs=t op:n€X Vi<i<n Xks; =t
-~ ——— SYMM
XHt=s Xtop(si,...,sn) =op(ty,..., t)

CONG
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Some Rules

Xks=t op:n€X Vi<i<n Xks;=1
. SYMM CONG
XHt=s Xtop(s1,...,8n) =op(t,..., tn)

Top dx(x,x') = ¢ Vi, Xbs = t e =inf;¢; c
XFs=r1 EEET XFs =1 ONT
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Some Rules

Xks=t op:ne€X Vi<i<n Xks =t

SYMM CONG
Xkt=s Xtop(sy,...,sn) =op(ty, ..., tn)
dx(x,x') =« Vi, XFs =t e = inf; ¢;
XFs = ¢ Tor —kazg 7 VARS X5 =t CONT

c:Y =X Yks=t Vyy €Y, Xto(y) =quy o)
Xt o*(s) = o*(¢)

SUBQ
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Some Rules

XkFs=t op:n€X Vi<i<n Xks =t
~ ., SYmMM CONG
XFt=s Xtop(sy,...,sn) =op(ty, ..., tn)
dx(x,x') =« Vi, XFs = t e =inf;¢;
—~——Tor B !
XFs— ¢ X x =, VARS XEs = ¢ CONT

c:Y =X Yks=t Vyy €Y, XFo(y) =quy o)
Xt o*(s) = o*(¢)

SuBQ

c:Y =X {vi=c vy} Fs=ct
{o(yi) = o(yi)} 0" (s) =e o™ (1)

Sub[MPP16]
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Some Rules

XbEs=t op:neX VI<i<n Xks;=t

SYMM
XHt=s Xtop(si,...,sn) =op(ty,..., tn) CONG
dx(x,x') = ¢ Vi, Xks =, t ¢ = inf;¢;
—~——— - Top s !
Xts=tt Xtx—, x VARS XFs =, t CONT

c:Y =X  Yks=t Vyy €Y, XFo(y) =4y o)
Xt o*(s) = 0*(¢)

SUBQ

Theorem (3.69 & 3.76)
Quantitative equational logic is sound and complete.
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Lifting Presentations
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Free Quantitative Algebras

Given a collection E of quantitative equations, the quantitative variety QAlg(Z, £)
of quantitative X-algebras satisfying E has free algebras over GMet, yielding a
monad on GMet.
Ty R
GMet ; QAIg(X%,E)
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Free Quantitative Algebras

Given a collection E of quantitative equations, the quantitative variety QAlg(Z, £)
of quantitative X-algebras satisfying E has free algebras over GMet, yielding a
monad on GMet.

Trz,iz

GMet 1 QAIlg(%,E)

u

Examples

» The Kantorovich monad Dx : Met — Met = (X, d) — (DX, dx) in [MPP16].

» The LK monad Dix : DMet — DMet = (X,d) — (DX, dx) in [MSV22] and
3.102.

» The Hausdorff monad P! : Met — Met in [MPP16].
» The ‘trivial’ powerset monad P : Met — Met in 3.100
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Lifting-Extension Correspondence

Monad-theory correspondences are shown in [FMS21; Ros21; Ad422; ADV23;
Ros24] with two caveats: arities can be infinite, and operations are nonexpansive
(thus, monads are enriched).
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Lifting-Extension Correspondence

Monad-theory correspondences are shown in [FMS21; Ros21; Ad422; ADV23;
Ros24] with two caveats: arities can be infinite, and operations are nonexpansive
(thus, monads are enriched).

Most examples of quantitative algebraic theories present monad liftings, and they
are based on classical algebraic theories.

GMet L GMet R
Ui lu M(X/ d) = (MX/ d)

Set L Set

Theorem (3.96, 3.98, 3.99)

M is a monad lifting of a monad M presented by (,E).
M is presented by (X, E), where E is an extension of E.
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Future Work

» Can we combine our work with [FMS21] to reason algebraically over
relational structures? [JMU24] does this for total operations.

» Is there a functorial semantics framework exactly as expressive as ours?
[Ros24] answered positively for Mardare et al.’s original quantitative algebras.

» How to compose two liftings of monads when their underlying Set monads
compose via composite theories? Examples in [MV20; MSV21].

» Further simplify the entry point to quantitative algebraic reasoning (find lots
of examples).

> Quantitative diagrammatic reasoning!
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Merci !
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Abstract Quantitative Equations

There is a well-known equivalent, more categorical, definition of equation.

Definition (1.50)
An abstract equation in Alg(X) is a surjective homomorphisme : X — Y.

We say that an algebra A € Alg(X) satisfies e if for any assignment ¢ : X — A, the
function [—]4 factors through e in Alg(X):

-4 = EX > Y 4 A.
Proposition (1.51 & 1.52)

Equations and abstract equations are equivalent in terms of expressiveness.
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Abstract Quantitative Equations

We can generalize to quantitative algebras as follows.

Definition (3.61)

An abstract quantitative equation is a surjective nonexpansive homomorphism
e: T:X — Y. We say that a quantitative algebra A satisfies e if for any
nonexpansive assignment 7 : X — A, the homomorphism #* factors through e in

QAlg(X):
F=TX S YA,

Proposition (3.62 & 3.63)

Quantitative equations (as we define them) and abstract quantitative equations are
equivalent in terms of expressiveness.

Example
We can’t take e to be epimorphisms, because e : Q — R is satisfied by R and not Q.
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Easy Half of Variety Theorem

Definition (3.22)

A homomorphism & : A — B is called reflexive if its underlying nonexpansive
map h : A — B is a split epimorphism. Equivalently, for any subspace B’ C B,
there is a subspace A’ C A such that h(A’) = B’ and the (co)restriction h : A’ — B’
is an isomorphism.

c.f. c-reflexive homomorphisms in [MPP17]: the quantification of B’ is restricted to
subspaces of cardinality smaller than c. Hence, / is reflexive if and only if it is
c-reflexive for all c.

Theorem (3.23)

For any class of quantitative equations E, the category QAlg(X, E) is closed under
reflexive homomorphic images, subalgebras, and products.

Theorem (3.65)

A subcategory K of LSpa is closed under subspaces (up to isomorphisms) and products if
and only if it is a category GMet = QAlg(?, E).
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Constructing LSpa

LSpa is a lax comma category of continuous functors L — (P(A x A), C):

e —=>[da(—,—)<¢]

L P(A xA)

P
e s [dp(——)<e] P(fxf)

P(B x B)

The lax commutativity of the triangle means forany e € L,

P(f x){(a,a) | da(a,a’) < e} C{(b) | dp(b,b") < e}
{(f(a).f(@) | da(a,a’) < e} C {(b,V") | dp(b,b') < e}
dp(f(a),f(a')) < da(a,a’)

a
a
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Compass of Lawvere Theories

» A model of a Lawvere theory Ly ¢ valued in Met is a quantitative algebra
satisfying the classical equations in E with operations that are nonexpansive:

Flop:n—1):Ax -"- XA — A.

» A model of Met-enriched Lawvere theory [Pow99] is a quantitative algebra
with possibly partial, infinitary, nonexpansive operations (=[FMS21]):

F(op:2p5 — 1) : A%5 = Met(205,A) — A.

Any quantitative equation can be expressed in the theory.
» A model of a discrete [Pow05; HP06] Met-enriched Lawvere theory is a
quantitative algebra in the sense of [MPP16]. Only discrete quantitative
equations (Xt I-s =, t) can be expressed.
» A model of a discrete [Ros24] Met-enriched Lawvere theory is a quantitative
algebra in the sense of [MPP16], and all and only quantitative equations can
be expressed.
» A model of a Poset-Lawvere theory for Set [NP09] is quantitative algebra
with partial, finitary, not necessarily nonexpansive operations (=[Ada+21]).
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Recovering Birkhoff’s Equational Logic

» With L = {T}, LSpa = Set, and all the quantitative equations X+ s =, t are
provable by TOP. The remaining fragment of QEL is Birkhoff’s logic (3.70).
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Recovering Birkhoff’s Equational Logic

» With L = {T}, LSpa = Set, and all the quantitative equations X+ s =, t are
provable by TOP. The remaining fragment of QEL is Birkhoff’s logic (3.70).

» Over any L, we can translate a classical equation X I-s = t into a quantitative
equation Xt s = t.

» This translation preserves provability (3.71).
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Lifted Signatures

Definition

Given a signature T, a lifted signature is an endofunctor % : GMet — GMet that
preserves isometric embeddings and lifts the Set endofunctor

=X+ Hop:nGZ X"

GMet —= GMet

| |

Set — = Set
For everyop : n € £, we get Lop(X,d) = (X", Lop(d)), and a i—algebra has
nonexpansive operations
[op] : (A", Lop(d)) — (A, d).
Examples include the product lifting, the tensor lifting, the discrete lifting, the
c-Lipschitz lifting.
Equivalently with quantitative equations:
V(X,dx) € GMet,Vx,y € X", (X, dx)Fop(x1,...,%n) =1 (dx)(xy) OPW1s -/ Yn)-
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Almost Lifted Signatures

Definition

Given a signature ¥, an almost lifted signature is a GMet endofunctor 3 that
preserves isometric embeddings and lifts the Set endofunctor X up to a monic
natural transformation ¢:

GMet L GMet
l ,/‘5/ l

Set - Set

Seeing the components fx : UEX < EX as inclusions, (X, £)-algebras now have
partial operations.
Example

If each operation op comes with an arity (1, dop), then we have an almost lifted
signature (c.f. [FMS21])
S(X) = JJ xtwer),

op:nex
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On Monadicity

In the thesis, we do not prove monadicity, only QAlg(Z, E) = EM(7;) in 3.80. In
[MSV23], we prove it essentially as follows:

Theorem

Up : QAlg(X) — LSpa is strictly monadic.

Proof. Left-adjoint by construction of free algebras, and strictly creates Up-absolute
coequalizers following MacLane.

Theorem

U; : QAlg(%, E) — LSpa is strictly monadic.

Proof. Idem for left adjoint, strictly creates U;-split coequalizers because U creates
them and QAlg(Z, £) is closed under images of Uy-split homomorphisms.
Theorem

U: QAlg(%, EUEGmet) — GMet is strictly monadic.

Proof. By GMet being a full reflective subcategory of LSpa and
Uy : QAIg(X, EUEgmet) — LSpa is strictly monadic.
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