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Let’s Talk About Hummus

into a food processor

add 300g strained cooked chickpeas

add 3 cloves of garlic

add 75g tahini

add 25mL lemon juice

blend for 5 minutes

season to taste

into a food processor

add 300g strained cooked chickpeas

add 4 cloves of garlic

add 75g tahini

add 25mL lemon juice

blend for 5 minutes

add 5 ice cubes

blend for 3 minutes

season to taste

Two different recipes but the result is hummus. We can compare the recipes:
▶ Does recipe 2 taste better than recipe 1?
▶ How different do the results taste?
▶ Which recipe takes longer?
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Program Equivalences and Distances

Example ([Neu51])

return fairCoin(H,T)

do

x = biasedCoin(H,T)

y = biasedCoin(H,T)

while (x == y)

return x

As long as the bias is consistent and not total (0% < p < 100%), the two programs
have the same behavior.
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Program Equivalences and Distances

Example (Guaranteed Termination)

return fairCoin(H,T)

i = 0

do

i = i + 1

x = biasedCoin(H,T)

y = biasedCoin(H,T)

while (x == y) AND i <= 1000

return x

The second program is very close to being a fair coin flip.
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Algebraic Semantics

We can see programming language syntax as operations on the set P of programs.
▶ Composition of two lines done with a semicolon:

; : P×P → P sends (C1, C2) to C1; C2.

▶ Random branching:

fairCoin : P2 → P sends (C1, C2) to fairCoin(C1, C2).

Equivalences of programs can be proven with algebraic reasoning.
With the axioms P; (Q; R) = (P; Q); R and fairCoin(P, P) = P, we can show

fairCoin(P; (Q; R), (P; Q); R) = P; (Q; R).
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Convex Algebras

Let us focus on one signature Σ = {+p : 2 | p ∈ (0, 1)}.
▶ Starting with a set of atomic instructions/states X = {x, y, z, w, · · · }, the

programs we can write are called Σ-terms, e.g.

x +p y x (x +p y) +q (w +p z) (((w +q w) +p z) +q x).

▶ Understanding +p as a probabilistic choice (c.f. fairCoin and biasedCoin),
we postulate the axioms of convex algebras:

x +p x = x x +p y = y +1−p x (x +q y) +p z = x +pq (y + p(1−q)
1−pq

z).

▶ Two terms are equivalent if and only if they represent the same probability
distribution. We can reason algebraically about probability distributions!

fairCoin(H, T) = fairCoin(fairCoin(H, T), fairCoin(H, T))
H +0.5 T = (H +0.5 T) +0.5 (H +0.5 T)

Question
Can we reason algebraically about distances between distributions?
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Mardare, Panangaden, and Plotkin’s Answer

Working in Met: objects are metric spaces (X, dX : X × X → [0, ∞]), and
morphisms are nonexpansive functions: f : X → Y such that

dY(f (x), f (x′)) ≤ dX(x, x′).

A convex algebra in Met is a metric space (A, dA) with nonexpansive operations

+p : (A, dA)× (A, dA) → (A, dA).
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Mardare, Panangaden, and Plotkin’s Answer

Example
For any space (X, d), there is the Kantorovich metric on distributions (DX, dK).
Convex combinations are nonexpansive operations (DX, dK)

2 → (DX, dK).

(φ +p ψ)(x) = pφ(x) + (1 − p)ψ(x).

In addition to the previous equations, this convex algebra satisfies an implication:

In [MPP16]:
▶ Replace d(x, y) ≤ ε with x =ε y and build an implicational logic.
▶ Construct free algebras with (DX,+p, dK) as an example.
▶ Axiomatization of metrics, e.g. Kantorovich, Hausdorff, total variation.

In following papers, more results generalized from universal algebra: HSP
theorems, composite theories, monad-theory correspondences, more
axiomatizations, etc.
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Our Contributions

▶ Replace metric spaces with generalized metric spaces, this includes pseudo-,
quasi-, ultra-metric spaces (already in [MSV22]), posets, simple graphs,
probabilistic metric spaces, etc. (c.f. [FMS21]).

▶ Allow operations to be arbitrary functions (also in [MSV22]).
▶ Motivation in [Bac+18a; Bac+18b; Cas+21; DL+22].

+p : (DX, dŁK)× (DX, dŁK) → (DX, dŁK) is not nonexpansive.

▶ Provide a sound and complete logic that is not implicational (c.f. [FMS21]).
▶ Sufficient condition and construction for quantitative algebraic

presentations for monads on GMet.

0Results from my manuscript will be numbered in this color.
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[0, ∞]-spaces

While metrics are relevant in practice, the essence of [MPP16]’s solution is in the
following isomorphism of categories.

Definition ([0, ∞]Spa)
A [0, ∞]-space is a set A equipped with a distance function dA : A × A → [0, ∞].
Morphisms are nonexpansive maps: f : A → B such that dB(f (a), f (a′)) ≤ dA(a, a′).

Definition ([0, ∞]Str)
A [0, ∞]-structure is a set A equipped with a family of binary predicates
=ε ⊆ A × A indexed by [0, ∞] satisfying

ε ≤ ε′ =⇒ =ε ⊆ =ε′ and =inf S = (∩ε∈S=ε).

Morphisms are functions preserving the predicates: a =ε a′ =⇒ f (a) =ε f (a′).

Proposition (2.21)
[0, ∞]Spa ∼= [0, ∞]Str by understanding a =ε a′ as dA(a, a′) ≤ ε.
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L-spaces

This remains true for any complete lattice L, e.g. [0, ∞] or [0, 1] or {0, 1} (examples
are usually quantales).

Definition (LSpa, 2.11)
An L-space is a set A equipped with a distance function dA : A × A → L.
Morphisms are nonexpansive maps: f : A → B such that dB(f (a), f (a′)) ≤ dA(a, a′).

Definition (LStr, 2.19)
An L-structure is a set A equipped with a family of binary predicates =ε ⊆ A × A
indexed by L satisfying

ε ≤ ε′ =⇒ =ε ⊆ =ε′ and =inf S = (∩ε∈S=ε).

Morphisms are functions preserving the predicates: a =ε a′ =⇒ f (a) =ε f (a′).

Proposition (2.21)
LSpa ∼= LStr by understanding a =ε a′ as dA(a, a′) ≤ ε.
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Quantitative Algebras

Definition (3.1)
Given a signature Σ = {opi : ni}i∈I, a quantitative Σ-algebra is an L-space (A, dA),
and an interpretation JopKA : An → A in Set for every op : n ∈ Σ.

QAlg(Σ) Alg(Σ)

LSpa Set

⌟

Examples

▶ The metric space (DX, dK) with convex combinations +p : DX ×DX → DX.
▶ The space (DX, dŁK) with convex combinations.
▶ The real numbers R with the Euclidean metric d and all the ring operations.

!
a

Addition and multiplication +,× : (R, d)× (R, d) → (R, d) are not in Met.
1 1 2

2 2 4

+

1

=

1 2

+ =

14 / 45



Quantitative Algebras

Definition (3.1)
Given a signature Σ = {opi : ni}i∈I, a quantitative Σ-algebra is an L-space (A, dA),
and an interpretation JopKA : An → A in Set for every op : n ∈ Σ.

QAlg(Σ) Alg(Σ)

LSpa Set

⌟

Examples

▶ The metric space (DX, dK) with convex combinations +p : DX ×DX → DX.
▶ The space (DX, dŁK) with convex combinations.
▶ The real numbers R with the Euclidean metric d and all the ring operations.

!
a

Addition and multiplication +,× : (R, d)× (R, d) → (R, d) are not in Met.
1 1 2

2 2 4

+

1

=

1 2

+ =

14 / 45



Quantitative Algebras

Definition (3.1)
Given a signature Σ = {opi : ni}i∈I, a quantitative Σ-algebra is an L-space (A, dA),
and an interpretation JopKA : An → A in Set for every op : n ∈ Σ.

QAlg(Σ) Alg(Σ)

LSpa Set

⌟

Examples

▶ The metric space (DX, dK) with convex combinations +p : DX ×DX → DX.
▶ The space (DX, dŁK) with convex combinations.
▶ The real numbers R with the Euclidean metric d and all the ring operations.

!
a

Addition and multiplication +,× : (R, d)× (R, d) → (R, d) are not in Met.
1 1 2

2 2 4

+

1

=

1 2

+ =

14 / 45



Quantitative Algebras

Definition (3.1)
Given a signature Σ = {opi : ni}i∈I, a quantitative Σ-algebra is an L-space (A, dA),
and an interpretation JopKA : An → A in Set for every op : n ∈ Σ.

QAlg(Σ) Alg(Σ)

LSpa Set

⌟

Examples

▶ The metric space (DX, dK) with convex combinations +p : DX ×DX → DX.
▶ The space (DX, dŁK) with convex combinations.
▶ The real numbers R with the Euclidean metric d and all the ring operations.

!
a

Addition and multiplication +,× : (R, d)× (R, d) → (R, d) are not in Met.
1 1 2

2 2 4

+

1

=

1 2

+ = 14 / 45



Outline

Context

Universal Quantitative Algebra

Quantitative Equational Logic

Lifting Presentations

Conclusion

15 / 45



Quantitative Equations

A classical equation is a judgment X ⊢ s = t, where s and t are Σ-terms over the
variables in a set X. An algebra A satisfies it if for all ι : X → A, JsKι

A = JtKι
A.

The meaning of X ⊢ is universal quantification.

This is not enough for quantitative algebras. How can you assert that the
interpretation of f : 1 is a contraction: the distance between fx and fy is less than
the distance between x and y.

Definition (3.8)
A quantitative equation is a judgment

(X, dX)⊢ s = t or (X, dX)⊢ s =ε t,

where (X, dX) is an L-space and s, t are Σ-terms over X.
It is satisfied by a quantitative algebra (A, J−KA, dA) if for all nonexpansive
assignments ι̂ : (X, dX) → (A, dA),

JsKι̂
A = JtKι̂

A or dA(JsKι̂
A, JtKι̂

A) ≤ ε.
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Examples

x y

(A, dA)

2ε

∞
ε

∞
∞

Examples (Σ = {f : 1,+ : 2})

▶ If 2ε ⊢ fx =ε fy is satisfied ∀ε, then JfKA : (A, dA) → (A, dA) is nonexpansive.

▶ If 20.5 ⊢ x + y = y + x is satisfied, then J+KA is nearly commutative.
▶ If 3ε,δ ⊢ x =ε+δ z is satisfied ∀ε, δ, then the triangle inequality holds in (A, dA).

Following the last example, we define GMet to be a full subcategory of QAlg(∅)
defined by a collection of quantitative equations, e.g. Met, UMet, Poset, Grph, etc.
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Some Rules

X⊢ s = t SYMMX⊢ t = s
op : n ∈ Σ ∀1 ≤ i ≤ n, X⊢ si = ti CONG

X⊢ op(s1, . . . , sn) = op(t1, . . . , tn)

TOPX⊢ s =⊤ t
dX(x, x′) = ε

VARS
X⊢ x =ε x′

∀i, X⊢ s =εi t ε = infi εi
CONTX⊢ s =ε t

σ : Y → TΣX Y⊢ s =ε t ∀y, y′ ∈ Y, X⊢ σ(y) =dY(y,y′) σ(y′)
SUBQ

X⊢ σ∗(s) =ε σ∗(t)

σ : Y → TΣX {yi =εi y′i} ⊢ s =ε t
Sub[MPP16]

{σ(yi) =εi σ(y′i)} ⊢ σ∗(s) =ε σ∗(t)
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Theorem (3.69 & 3.76)
Quantitative equational logic is sound and complete.
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Free Quantitative Algebras

Given a collection Ê of quantitative equations, the quantitative variety QAlg(Σ, Ê)
of quantitative Σ-algebras satisfying Ê has free algebras over GMet, yielding a
monad on GMet.

GMet QAlg(Σ, Ê)
T̂Σ,Ê

U

⊣

Examples

▶ The Kantorovich monad DK : Met → Met = (X, d) 7→ (DX, dK) in [MPP16].
▶ The ŁK monad DŁK : DMet → DMet = (X, d) 7→ (DX, dŁK) in [MSV22] and

3.102.
▶ The Hausdorff monad P↑

ne : Met → Met in [MPP16].
▶ The ‘trivial’ powerset monad P̂ : Met → Met in 3.100
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Lifting-Extension Correspondence

Monad-theory correspondences are shown in [FMS21; Ros21; Adá22; ADV23;
Ros24] with two caveats: arities can be infinite, and operations are nonexpansive
(thus, monads are enriched).

Most examples of quantitative algebraic theories present monad liftings, and they
are based on classical algebraic theories.

GMet GMet

Set Set

M̂

U U

M

M̂(X, d) = (MX, d̂)

Theorem (3.96, 3.98, 3.99)

M̂ is a monad lifting of a monad M presented by (Σ, E).
⇕

M̂ is presented by (Σ, Ê), where Ê is an extension of E.
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Future Work

▶ Can we combine our work with [FMS21] to reason algebraically over
relational structures? [JMU24] does this for total operations.

▶ Is there a functorial semantics framework exactly as expressive as ours?
[Ros24] answered positively for Mardare et al.’s original quantitative algebras.

▶ How to compose two liftings of monads when their underlying Set monads
compose via composite theories? Examples in [MV20; MSV21].

▶ Further simplify the entry point to quantitative algebraic reasoning (find lots
of examples).

▶ Quantitative diagrammatic reasoning!
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Merci !
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Abstract Quantitative Equations

There is a well-known equivalent, more categorical, definition of equation.

Definition (1.50)
An abstract equation in Alg(Σ) is a surjective homomorphism e : TΣX ↠ Y.
We say that an algebra A ∈ Alg(Σ) satisfies e if for any assignment ι : X → A, the
function J−Kι

A factors through e in Alg(Σ):

J−Kι
A = TΣX

e
↠ Y

h−→ A.

Proposition (1.51 & 1.52)
Equations and abstract equations are equivalent in terms of expressiveness.
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Abstract Quantitative Equations

We can generalize to quantitative algebras as follows.

Definition (3.61)
An abstract quantitative equation is a surjective nonexpansive homomorphism
e : T̂ΣX → Ŷ. We say that a quantitative algebra Â satisfies e if for any
nonexpansive assignment ι̂ : X → A, the homomorphism ι̂♯ factors through e in
QAlg(Σ):

ι̂♯ = T̂ΣX e−→ Ŷ
h−→ Â.

Proposition (3.62 & 3.63)
Quantitative equations (as we define them) and abstract quantitative equations are
equivalent in terms of expressiveness.

Example
We can’t take e to be epimorphisms, because e : Q ↠ R is satisfied by R and not Q.
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Easy Half of Variety Theorem

Definition (3.22)
A homomorphism h : Â → B̂ is called reflexive if its underlying nonexpansive
map h : A → B is a split epimorphism. Equivalently, for any subspace B′ ⊆ B,
there is a subspace A′ ⊆ A such that h(A′) = B′ and the (co)restriction h : A′ → B′

is an isomorphism.
c.f. c-reflexive homomorphisms in [MPP17]: the quantification of B′ is restricted to
subspaces of cardinality smaller than c. Hence, h is reflexive if and only if it is
c-reflexive for all c.

Theorem (3.23)
For any class of quantitative equations Ê, the category QAlg(Σ, Ê) is closed under
reflexive homomorphic images, subalgebras, and products.

Theorem (3.65)
A subcategory K of LSpa is closed under subspaces (up to isomorphisms) and products if
and only if it is a category GMet = QAlg(∅, Ê).

39 / 45



Constructing LSpa

LSpa is a lax comma category of continuous functors L → (P(A × A),⊆):

L P(A × A)

P(B × B)

ε 7→[dA(−,−)≤ε]

ε 7→[dB(−,−)≤ε]
P(f×f )

⊇

The lax commutativity of the triangle means for any ε ∈ L,

P(f × f ){(a, a′) | dA(a, a′) ≤ ε} ⊆ {(b, b′) | dB(b, b′) ≤ ε}
{(f (a), f (a′)) | dA(a, a′) ≤ ε} ⊆ {(b, b′) | dB(b, b′) ≤ ε}

dB(f (a), f (a′)) ≤ dA(a, a′)
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Compass of Lawvere Theories

▶ A model of a Lawvere theory LΣ,E valued in Met is a quantitative algebra
satisfying the classical equations in E with operations that are nonexpansive:

F(op : n → 1) : A× n· · · ×A → A.

▶ A model of Met-enriched Lawvere theory [Pow99] is a quantitative algebra
with possibly partial, infinitary, nonexpansive operations (=[FMS21]):

F(op : 20.5 → 1) : A20.5 = Met(20.5, A) → A.

Any quantitative equation can be expressed in the theory.
▶ A model of a discrete [Pow05; HP06] Met-enriched Lawvere theory is a

quantitative algebra in the sense of [MPP16]. Only discrete quantitative
equations (X⊤ ⊢ s =ε t) can be expressed.

▶ A model of a discrete [Ros24] Met-enriched Lawvere theory is a quantitative
algebra in the sense of [MPP16], and all and only quantitative equations can
be expressed.

▶ A model of a Poset-Lawvere theory for Set [NP09] is quantitative algebra
with partial, finitary, not necessarily nonexpansive operations (=[Adá+21]).
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Recovering Birkhoff’s Equational Logic

▶ With L = {⊤}, LSpa = Set, and all the quantitative equations X⊢ s =ε t are
provable by TOP. The remaining fragment of QEL is Birkhoff’s logic (3.70).

▶ Over any L, we can translate a classical equation X ⊢ s = t into a quantitative
equation X⊤ ⊢ s = t.
▶ This translation preserves provability (3.71).
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Lifted Signatures

Definition
Given a signature Σ, a lifted signature is an endofunctor Σ̂ : GMet → GMet that
preserves isometric embeddings and lifts the Set endofunctor
Σ = X 7→ ⨿op : n∈Σ Xn:

GMet GMet

Set Set

Σ̂

Σ

For every op : n ∈ Σ, we get Lop(X, d) = (Xn, Lop(d)), and a Σ̂-algebra has
nonexpansive operations

JopK : (An, Lop(d)) → (A, d).

Examples include the product lifting, the tensor lifting, the discrete lifting, the
c-Lipschitz lifting.
Equivalently with quantitative equations:

∀(X, dX) ∈ GMet, ∀x, y ∈ Xn, (X, dX)⊢ op(x1, . . . , xn) =Lop(dX)(x,y) op(y1, . . . , yn).
43 / 45



Almost Lifted Signatures

Definition
Given a signature Σ, an almost lifted signature is a GMet endofunctor Σ̂ that
preserves isometric embeddings and lifts the Set endofunctor Σ up to a monic
natural transformation ℓ:

GMet GMet

Set Set

Σ̂

ℓ

Σ

Seeing the components ℓX : UΣ̂X ↪→ ΣX as inclusions, (Σ̂, ℓ)-algebras now have
partial operations.

Example
If each operation op comes with an arity (n, dop), then we have an almost lifted
signature (c.f. [FMS21])

Σ̂(X) = ⨿
op:n∈Σ

X(n,dop).
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On Monadicity

In the thesis, we do not prove monadicity, only QAlg(Σ, Ê) ∼= EM(T̂Σ,Ê) in 3.80. In
[MSV23], we prove it essentially as follows:

Theorem
U0 : QAlg(Σ) → LSpa is strictly monadic.
Proof. Left-adjoint by construction of free algebras, and strictly creates U0-absolute
coequalizers following MacLane.

Theorem
U1 : QAlg(Σ, Ê) → LSpa is strictly monadic.
Proof. Idem for left adjoint, strictly creates U1-split coequalizers because U0 creates
them and QAlg(Σ, Ê) is closed under images of U0-split homomorphisms.

Theorem
U : QAlg(Σ, Ê ∪ ÊGMet) → GMet is strictly monadic.
Proof. By GMet being a full reflective subcategory of LSpa and
U1 : QAlg(Σ, Ê ∪ ÊGMet) → LSpa is strictly monadic.
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