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Introduction

What are we talking about ?

I Most famous open problem in theoretical computer science.

I Roughly translates to : If the solution to a problem can be
verified easily, then can it be found easily ?

I Has way too many theoretical and practical applications.
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I Upper bounds : algorithms and reductions.
NP-hardness, Cook-Levin and examples.

I Lower bounds : three barriers.
Relativizing proofs, natural proofs and algebrizing proofs.
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Hilbert’s 10th problem

Given a polynomial with integer coefficients in several variables :
Find an algorithm that will determine whether it has integer roots
or not.

Emil Leon Post thought this was unsolvable and developed
computability theory.



Origins of the question

Hilbert’s 10th problem

Given a polynomial with integer coefficients in several variables :
Find an algorithm that will determine whether it has integer roots
or not.

Emil Leon Post thought this was unsolvable and developed
computability theory.



Origins of the question

Hilbert’s 10th problem

Given a polynomial with integer coefficients in several variables :
Find an algorithm that will determine whether it has integer roots
or not.

Emil Leon Post thought this was unsolvable and developed
computability theory.



Models of computation

Rigorous definition of an algorithm, often with notions of resources
and efficiency.
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(modern computers), etc...



Models of computation

Rigorous definition of an algorithm, often with notions of resources
and efficiency.

Examples

Turing machines, λ-calculus, finite state machines, RAM-model
(modern computers), etc...



Turing machine

Defined as a 5-tuple (Q, Σ, Γ, δ, q0) where

1. Q is a set of states with distinct accept and reject states,

2. Σ (a finite set of symbols) is the input alphabet,

3. Γ ⊇ Σ (a finite set of symbols) is the tape alphabet,

4. δ : Q× Γ→ Q× Γ× {L, R} is the transition function, and

5. q0 is the initial state.



Turing machine

Running a TM

1. Start with input w ∈ Σ∗ on tape, head on first symbol and at
state q0.

2. At each step, follow the transition rule to change state, write
on tape and move left or right.

3. Run previous step until accept or reject state is reached.

A TM computes a function f : Σ∗ → Σ∗ if for any input w, it halts
with f (w) written on the tape.
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Resources of a TM

Time
We say that M runs in time T(n) if for any input of size n, the
number of steps that M needs before halting is at most T(n).

Space

We say that M runs in space S(n) if for any input of size n, the
maximum number of cells of the tape used is at most S(n).
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Complexity classes

A complexity class is a set of functions f : Σ∗ → Σ∗ with
“similar”needs in terms of resources.

Computable

A function f is computable if there exists a TM that computes f
(no restriction on the resources).

P
A function f is in P if there exists a TM that computes f in time
T(n) for some polynomial T.

NP
A function f is in NP if there exists a TM that, given w, x ∈ Σ∗,
can say whether f (x) = w in time T(n) for some polynomial T.
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Complexity classes

Complexity zoo.



Examples

Multiplication

Given two numbers a, b ∈N, output a · b.

Factorization
Given a number x ∈N, output primes p1, . . . , pn such that
p1 · · · pn = n.

Sudoku
Given a Sudoku board, output the solved board.

Bitcoin mining

Given the data for a block, output a nonce that satisfies the
mining requirement.
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Reductions

We say that a problem A reduces to a problem B if an algorithm
that solves B can be used to define an algorithm that solves A.

We write A ≤ B because B is at least as hard as A.

When interested in polytime reductions, we write A ≤p B.
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Cook-Levin

Satisfiability (SAT)

Given a boolean formula φ in n variables, decide whether there are
values of x1, . . . , xn such that φ(x1, . . . , xn).

Theorem
Any problem in NP has a polytime reduction to SAT.

Thus, if there exists an polytime algorithm for SAT, then P = NP.
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NP-hardness

If SAT reduces to a problem X, then X is also NP-hard, hence
solving X in polytime implies P = NP.

Examples

Traveling salesperson problem, solving an n× n× n Rubik’s cube
optimally, finding a valid move in an n× n checkers board.
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Diagonalization

Some functions are not computable

The number of TM is countable because each TM has a finite
description (Q, Σ, Γ, δ, q0).

The number of languages is uncountable (cardinality of P(Σ∗)).

Unfortunately, this kind of proof relativizes.
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Oracles

An oracle is a black box that can solve a particular problem in a
single step.

We write PL to denote the set of languages that can be decided in
polytime with a TM that has access to an oracle for L.

We say that a proof relativizes if it works whether or not oracles
are allowed.
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Relativizing proofs

P vs. NP has contradicting relativizations

Baker, Gill and Solovay showed there are languages A, B such that

PA = NPA

PB 6= NPB

Thus, no relativizing proofs can lead to a solution.
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Circuits

Definition
A directed acyclic graphs where each vertex is either an input with
in-degree 0 or a gate computing AND, OR, or NOT of its inputs.
One vertex is the output of the circuit.

Resources
The size of a circuit is the number of edges and the depth of a
circuit is the maximal length of path ending in the output gate.

P/poly denotes the set of languages that can be decided by a
circuit of polynomial size.
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Natural proofs

NP 6⊆ P/poly =⇒ P 6= NP

Strategy

1. Find some property X of functions that SAT (or some other
NP problem) satisfies.

2. Show that no function in P/poly has property X.
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Natural proofs

We say this is a natural proof if :

1. “Many”functions satisfy X. (Largeness)

2. Easy to verify if a function satisfies X. (Constructivity)

Razbarov and Rudich showed that natural proof will inevitably fail.
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Algebrization

Similar to relativization, but we allow low-degree extension of
oracles in finite fields.
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I We might find an O(nd) algorithm with d huge.

I We could prove existence of such an algorithm.

I Upper bounders have been way more successful than lower
bounders.
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I No one has been able to solve NP-complete problems in
polytime.

I If P = NP, then P = PH and PH includes so many harder
problems (e.g. : proving theorems).
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Thank you !

Merci !
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