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Rapport des travaux antérieurs
Mes travaux se situent à l’intersection de la logique, de l’informatique et de la théorie

des catégories. En bref, mes travaux peuvent se résumer à la conception d’extension
des raisonnements algébrique et diagrammatique à une dimension quantitative pour
modéliser des distances entre programmes. La série d’articles écrits avec mes encadrant·es
de thèse [37, 38, 39] concerne des extensions de la logique équationnelle de Birkhoff et les
articles écrits pendant mon postdoctorat [33, 55] concernent des extensions du langage
des diagrammes de cordes. Dans ce qui suit, j’explique ces thèmes et je détaille certaine de
mes contributions à la recherche actuelle.

Contexte : Sémantique quantitative

Un objectif central de la sémantique des programmes, qui motivait déjà les papiers
fondateurs du domaine comme [18], est l’étude de l’équivalence entre programmes. Si la
notion précise d’équivalence peut dépendre de la situation, l’idée générale est que deux
programmes sont équivalents lorsqu’ils ont des comportements indifférenciés à l’exécution.
Ainsi, des programmes qui prennent un entier en entrée et produisent un entier en sortie
sont équivalents s’ils renvoient toujours la même valeur pour chaque entier donné. Comme
on ne peut pas tester toutes les entrées possibles (car il y en a une infinité), on doit passer
par une analyse formelle.

Si on pouvait systématiquement décider si deux programmes donnés ont le même
comportement quand on les exécute, on pourrait plus facilement détecter des erreurs
d’implémentation ou bien optimiser du code. Même si une solution générale à ce problème
ne peut exister, 1 il y a un grand corpus de recherche à ce sujet sous différents points de vue
qui ne cesse de grandir, par exemple [24, 36, 47, 49, 50, 57, 60], qui permet une meilleure
compréhension du problème et des solutions (efficaces) dans des cas spécifiques.

Toutefois, la notion classique d’équivalence comportementale est parfois trop peu
nuancée pour l’analyse de programmes modernes, tout particulièrement ceux qui mani-
pulent des données et des effets quantitatifs ou probabilistes (e.g. des coordonnées GPS,
des modèles statistiques, des relevés de capteurs comprenant du bruit, etc.) Détaillons un
exemple avec des programmes probabilistes.

Imaginons un langage de programmation avec une fonctionnalité simulant le lancer
d’une pièce biaisée pour faire un choix aléatoire : flip(p) retourne true avec probabilité p
et false avec probabilité 1 − p. Même sans connaı̂tre la valeur de p, si elle est entre 0 et 1
exclus, on peut écrire un programme (Figure 1) qui se comporte comme le lancer d’une
pièce équitable (flip(0.5)). Pour prouver la correction du programme à droite, dû à von
Neumann [41], il suffit de considérer les possibilités après être sortie de la boucle, quand x

et y diffèrent : ou bien x est true et y est false (avec probabilité p(1 − p)), ou bien x est
false et y est true (avec probabilité (1 − p)p). Les deux options ont la même probabilité
d’arriver, donc si on conditionne sur le fait d’être sorti de la boucle, chaque option a une
probabilité de 1/2. Le fait que p ne soit ni 0 ni 1 nous permet finalement de garantir que

1. C’est une conséquence célèbre de l’indécidabilité du problème de l’arrêt.
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return flip(0.5)

do

x = flip(p)

y = flip(p)

while (x == y)

return x

FIGURE 1 – Deux programmes équivalents qui n’utilisent pas la même primitive pour les
choix aléatoires. (On suppose 0 < p < 1.)

le programme sortira de la boucle avec probabilité 1. Il retourne donc true et false avec
probabilité 1/2 chacun, comme le programme à gauche 2.

L’argument qu’on a donné pour se convaincre que le programme termine (qu’il sort
de la boucle) est un peu ad-hoc. Il ne concerne pas directement la logique d’exécution du
programme, et il serait difficile de rendre ce raisonnement systématique pour prouver la
terminaison de programmes complexes. On peut garantir la terminaison d’une manière
explicite en mettant une borne sur le nombre de boucles comme avec le programme suivant
(Figure 2). Malheureusement, notre preuve d’équivalence avec une pièce équitable n’est
plus valable. Il est maintenant possible que x et y coı̈ncide à la sortie de la boucle. Même si

i = 0

do

i = i + 1

x = flip(p)

y = flip(p)

while (x == y) AND i <= 1000

return x

FIGURE 2 – Un programme qui simule presque une pièce équitable avec une garantie
(non)-probabiliste de terminaison.

le programme de la Figure 2 et le simple return flip(0.5) ne sont pas équivalents, on
voudrait les comparer plus subtilement, car ils sont moins différents l’un de l’autre qu’ils le
sont de return true par exemple. C’est là qu’entre en scène la sémantique quantitative 3.

Le domaine de la sémantique quantitative a émergé pour offrir des notions de com-
paraison plus fines. Au lieu de s’intéresser à l’équivalence (ou non-équivalence) entre
programmes, il est souvent préférable de quantifier les similitudes (ou dissimilitudes) entre
programmes. On attribue donc à chaque paire de programme (P, Q) une distance d(P, Q),
qui est un nombre petit si P et Q ont des comportements proches, et un nombre grand

2. Cet exemple illustre un autre avantage de la vérification formelle par rapport aux tests. Après des mil-
liers d’exécutions, ces deux programmes produiront rarement la même distribution. Une analyse statistique
peut augmenter notre confiance que ces programmes sont équivalents, mais jamais le prouver.

3. Le terme ≪ quantitatif ≫ a parfois une autre signification en sémantique. Il peut désigner l’analyse des
utilisations d’une variable dans un programme comme premièrement investigué par Girard [21]. Curieuse-
ment, cette signification serait plus à propos dans la section suivante.



à l’inverse. Ainsi, la distance entre la pièce équitable et le programme de la Figure 2 est
proportionnelle avec la probabilité de sortir de la boucle avec x = y. Elle varie avec la taille
de la borne et la différence entre p et 1/2 : plus p est proche de 1/2, plus la probabilité que i

dépasse 1000 avant de sortir de la boucle sera petite ; avec p fixe, on peut aussi réduire la
probabilité de sortir de la boucle avec x = y en augmentant la taille de la borne.

Les notions de distance comportementale entre programmes, souvent formalisées par
des métriques, font l’objet d’une littérature vaste et toujours active. On mentionne ici
quelques workshops récents consacrés à ces questions [2, 29, 30, 42, 43], qui fournissent
davantage de références.

Mes contributions : Raisonnement algébrique quantitatif

Durant mon master, j’ai débuté un travail avec Matteo Mio et Valeria Vignudelli sur la
caractérisation de (distances entre) programmes. Dans [38], on représente des programmes
comportant de l’aléatoire et du non-déterminisme avec la syntaxe suivante : P +p Q dénote
un programme qui exécute P avec probabilité p et Q avec probabilité 1 − p ; P ⊕ Q dénote
un programme qui choisit d’exécuter P ou Q non-déterministiquement ; nil représente un
programme qui termine immédiatement.

On postule ensuite des axiomes équationnels pour raisonner algébriquement sur
l’équivalence entre programmes. Par exemple, on a P ⊕ Q = Q ⊕ P, car un choix non-
déterministe n’est pas sensible à l’ordre de ses options, on a P +p P = P = P ⊕ P, car
un choix est trivial quand les deux options sont les mêmes. Le raisonnement algébrique
permet de dériver d’autres équations à partir des axiomes, e.g.

(P ⊕ Q) +p (Q ⊕ P) = (P ⊕ Q) +p (P ⊕ Q) = P ⊕ Q.

En se basant sur les travaux de Mardare et al. [35], on postule aussi des axiomes équationnels
quantitatifs de la forme P =ε Q, où ε ∈ [0, 1], qu’on interprète comme une borne supérieure
de ε sur la distance entre P et Q. Par exemple, P =0 P exprime que la distance entre un pro-
gramme et lui-même est en dessous de zéro, donc zéro. Pour un exemple plus intéressant :

P =ε Q et P′ =ε′ Q′ =⇒ P +p Q =pε+(1−p)ε′ P′ +p Q′

exprime que la distance entre deux programmes obtenus par choix probabiliste est bornée
par la combinaison des distances entre leurs composantes. Le raisonnement algébrique
quantitatif, développé dans [35], permet de dériver d’autres bornes à partir des axiomes.

Notre résultat principal établit que la plus petite borne dérivable entre deux pro-
grammes coı̈ncide avec la distance d’Hausdorff–Kantorovich, qui combine deux distances
(Hausdorff et Kantorovich) déjà bien étudiées dans ce contexte [16, 17, 58]. Notre ar-
ticle [38] constitue une extension non triviale de travaux antérieurs [8, 40] consacrés aux
programmes non-déterministes et probabilistes, en intégrant la terminaison de plusieurs
manières différentes afin de caractériser l’équivalence et la distance comportementale.

Au début de ma thèse, encadrée par Matteo et Valeria, j’ai poursuivi cette direction et je
me suis penché sur l’axiomatisation de la distance de Łukaszyk-Karmowski (ŁK), car elle
est proche de celle de Kantorovich, et elle a récemment été utilisée pour l’apprentissage



par renforcement [10]. Celle-ci pose problème dans le cadre théorique de Mardare et al.
puisque la combinaison convexe n’est pas une opération lipschitzienne et la distance ŁK
n’est pas une métrique, deux conditions nécessaire dans [35].

Dans [37], on introduit la notion d’un relèvement d’une signature qui permet de relaxer
cette première condition et traiter les opérations non lipschitziennes. On généralise aussi
la notion de distance pour relaxer la deuxième condition. Après avoir démontré que
la majorité des résultats de l’article original [35] sont toujours valides, on obtient une
axiomatisation de la distance ŁK.

Nous avons conçu la notion de relèvement d’une signature en suivant une tradition de
l’algèbre catégorique qui se base sur les foncteurs. Cela a d’ailleurs permis à Jurka et al. [27]
de généraliser notre cadre au-delà des distances pour étudier les structures relationnelles
arbitraires. Cependant, en préparant une version étendue de [37], nous avons décidé de
délaisser cette notion pour nous rapprocher du raisonnement algébrique classique.

L’approche qu’on propose dans [39] unifie plus simplement le raisonnement algébrique
et le raisonnement quantitatif. En particulier, le système logique développé ressemble
singulièrement à la logique équationnelle de Birkhoff [5], omniprésente en sémantique
algébrique. Cela mène à un nouveau résultat qui simplifie plusieurs preuves d’axiomatisa-
tion quantitative : toute distance concrète définie sur une structure algébrique peut être
axiomatisée à partir de l’axiomatisation purement algébrique de la structure sous-jacente.
Ce résultat est constructif (les axiomes sont explicitement fournis) et couvre la grande
majorité des axiomatisations algébriques quantitatives existantes 4.

Mon manuscrit de thèse est largement basé sur [39], mais le deuxième chapitre sur les
espaces métriques généralisés accomplit deux objectifs.
1. J’ai généralisé une dernière fois la notion de distance. Cette fois, la distance entre deux

éléments n’est plus forcément un nombre réel. Cela permet de mettre sous un même
toit le raisonnement algébrique sur les espaces métriques et le raisonnement algébrique
sur les espaces ordonnés, ce dernier étant largement étudié en sémantique [22, 23, 56].

2. J’ai réifié la notion d’axiomes sur les distances pour qu’ils fassent partie intègre des
axiomatisations, ce qui clarifie davantage la frontière entre raisonnement algébrique et
raisonnement quantitatif.

Autres travaux Mon deuxième stage de master était supervisé par Daniela Petrişan.
On a travaillé sur des aspects théorique de la combinaison du non-déterminisme et du
probabilisme. Nos résultats ont été publiés dans [45], avec notamment une conjecture qui
a été résolue par Rosset et al. dans [51].

Durant ma thèse, j’ai visité l’université McGill pendant un trimestre pour travailler
avec Prakash Panangaden, un auteur de [35]. Nos travaux n’ont pas encore abouti à la
rédaction d’un article, mais notre collaboration m’a valu une première invitation à un
workshop plutôt select organisé par Prakash et Alexandra Silva à l’institut de recherche
de Bellairs. C’est là que j’ai pu discuter avec Fabio Zanasi de la motivation derrière nos
travaux actuels sur les diagrammes de cordes que j’explique ci-dessous.

4. Une exception notable est le résultat principal de [52].



Contexte : Sémantique diagrammatique

L’analyse de programmes comme ceux des Figures 1 et 2 requiert une étape de traduc-
tion vers la syntaxe algébrique. Cela comporte une subtilité qu’on illustre dans la Figure 3.
À gauche, on assigne la valeur d’un lancer de pièce équitable (true ou false) à x, puis on

x = flip(0.5)

return x or x
return flip(0.5) or flip(0.5)

FIGURE 3 – Le programme à droite résulte d’une application de la substitution dans le
programme de gauche. Ils ne sont pourtant pas équivalents.

retourne la disjonction de x avec lui-même. Comme la disjonction est idempotente, c’est
comme si on retournait x, donc on obtient true et false 50% du temps chacun. À droite,
on a combiné les deux lignes en appliquant une substitution : on a remplacé x dans la
deuxième instruction par l’expression qu’on lui assigne dans la première. Cependant, rien
ne nous indique que les deux lancers de pièces sont corrélés, alors on doit considérer que
les quatre options possibles (⟨true, true⟩, ⟨true, false⟩, ⟨false, true⟩, ⟨false, false⟩) se
produisent avec probabilité 1/4 chacune. Après la disjonction, on obtient true 75% du
temps et false 25% du temps. Les deux programmes ne sont donc pas équivalents.

La substitution étant un pilier central du raisonnement algébrique, ce la pose des
difficultés dans la traduction. On dit que la syntaxe algébrique est cartésienne alors que
la syntaxe des programmes (ceux considérés ici) ne l’est pas. Cette dernière est parfois
dite monoı̈dale ou bien linéaire. Plus verbeusement, les programmes probabilistes sont
sensibles à l’utilisation des ressources ou à la gestion des variables. C’est pourquoi ils sont
plus fidèlement représenté par des diagrammes de cordes.

Les diagrammes de cordes—qui prennent leur origine dans une syntaxe informelle
de Penrose [44] et qui ont ensuite été formalisés pour leur utilisation en théorie des
catégories par Joyal et Street [26]—sont depuis quelques années reconnus pour leur justesse
dans la modélisation compositionnelle de procédés et de systèmes divers, notamment
en informatique quantique [3, 13, 14, 25, 48], en théorie de la probabilité [19, 46, 59],
en apprentissage [15, 61] et même dans des domaines a priori plus éloignés comme la
linguistique [12, 28], l’épidémiologie [4, 31] et la chimie [20, 34].

Concrètement, un diagramme de cordes est une représentation visuelle d’un mor-
phisme dans une catégorie monoı̈dale, ce dernier étant le plus souvent l’incarnation
mathématique d’un procédé dans un sens très large du terme. Plusieurs exemples de
diagrammes tirés de mes papiers sont dans la Figure 4.

La syntaxe peut s’apparenter à celles des diagrammes techniques pour les circuits
électroniques et c’est parfois une bonne intuition à garder, mais les diagrammes de cordes
sont beaucoup plus expressifs (voir les papiers cités ci-dessus). Un argument central
pour utiliser ces diagrammes dans les applications ci-dessus est qu’ils sont considérés
modulo les déformations continues et donc permettent une meilleure visualisation de la
sémantique. Quand on bouge les cordes et les composantes sans casser de cordes et sans
changer l’ordre des entrées et des sorties du diagramme, on ne change pas l’interprétation
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FIGURE 4 – Trois exemples de diagrammes de cordes.

du diagramme, les deux diagrammes sont même considérés comme étant égaux :

f

g h

f

g

h

=

Écrit avec la notation classique, cette équation devient

( f ⊗ id) ; (id ⊗ (g ; h)) = ( f ⊗ g) ; σ ; (h ⊗ id) ; σ,

ce qui est nettement moins lisible. De plus, l’intuition visuelle derrière les déformations
et les axiomes additionels reflète souvent l’intuition opérationnelle sur les procédés
représentés. Par exemple, dans les diagrammes ci-dessus, comme f et g sont composés en
parallèle et ne partage pas d’information, leur ordre d’éxécution n’est pas important, ainsi
on a pu glisser g sous f sans changer le sens du diagramme.

On parle de raisonnement diagrammatique quand on dérive des équations entre
diagrammes en appliquant ces déformations ainsi que des axiomes donnés : si on sait que
les diagrammes f et g sont égaux, alors on peut remplacer f par g à chaque fois
qu’il apparaı̂t dans un plus grand diagramme :

f

g h

g

g

h

=f = g =⇒

Pour étudier l’équivalence entre programmes, ils sont maintenant représentés par
des diagrammes : il y a des boı̂tes qui représentent les primitives d’un langage ; les deux
dimensions de composition (gauche à droite et haut en bas) représentent respectivement les
compositions séquentielles et parallèles ; et l’équivalence entre programmes est caractérisée
par des axiomes équationnels avec le raisonnement diagrammatique. La réutilisation d’une
variable est maintenant explicité par le diagramme qu’on interprète comme nœud qui
copie son entrée en deux sorties identiques. La traduction des programmes de la Figure 3
produit deux diagrammes qui ne sont pas égaux.

0.5
0.5

0.5
̸=

Remarque : Bien que les diagrammes de cordes peuvent sembler inhabituels comme
objet d’étude, leur emploi est fondé sur des motivations solides, comme la gestion explicite
des ressources et la manipulation visuelle de concepts abstraits. Je développe encore
d’autres avantages dans mon projet de recherche.



Mes contributions : Extensions du raisonnement diagrammatique

Ma collaboration avec Fabio Zanasi a débuté lors d’un workshop [42], autour de
l’ajout d’une dimension quantitative au raisonnement diagrammatique, en combinant
mon expertise et la sienne. Après une visite de recherche de deux semaines en juillet 2023,
j’ai rejoint son équipe à University College London comme postdoctorant. Cela a conduit à
un article commun [33], coécrit avec Gabriele Lobbia et Wojciech Różowski, qui pose des
bases du raisonnement diagrammatique quantitatif, que je ne développe pas ici.

En parallèle, je me suis penché sur une autre extension des diagrammes de cordes
inspiré par un projet à Londres financé par l’Advanced Research + Invention Agency (ARIA)
sur l’application des méthodes formelles pour assurer la fiabilité de l’intelligence artifi-
cielle [1] 5. ARIA organise régulièrement des workshops durant lesquels j’ai pu échanger
avec d’autres chercheurs et chercheuses, notamment les groupes dirigés par Filippo Bonchi
à Pise, Paweł Sobociński à Tallinn et Sam Staton à Oxford.

J’ai alors étudier longuement deux papiers présentés à ces rencontres : le premier [46]
donne une axiomatisation diagrammatique d’un langage probabiliste discret ; le second [32]
décrit une solution alternative au problème de la combinaison des choix non-déterministes
et probabilistes via la notion de monade graduée. Fort de mon expertise sur la combinaison
du non-déterminisme et du probabilisme ainsi que sur les diagrammes de cordes, j’ai pu
rapidement obtenir des résultats intéressants en croisant les idées de ces deux papiers.

Dans [55], on introduit une syntaxe diagrammatique pour les morphismes d’une
catégorie monoı̈dale graduées. Celle-ci étend les diagrammes de cordes classiques en ra-
joutant des cordes qui pendent vers le bas et indique que des entrées auxiliaires sont prises
en compte par le procédé représenté (voir la corde orange dans le troisième diagramme de
la Figure 4). Dans notre application principale (inspirée de [46] et [32]), les diagrammes
représentent des procédés stochastiques qui ont accès, via ces entrées auxiliaires, à une
source d’aléa non-déterministe.

Notre article [55] a fait l’objet d’une invitation à soumettre une version longue [54]
dans la revue Logical Methods in Computer Science.

Je mentionne ici que mon initiation à la recherche sur les diagrammes de cordes s’est
faite en 2022 durant l’école de recherche associée à la conférence Applied Category Theory.
J’avais travaillé sur le projet de Filippo Bonchi sur la représentation de relations et de
programmes avec les diagrammes de rubans (tape diagrams) [7], une autre extension des
diagrammes de corde. Ce projet a depuis mené à d’autres papiers [6, 9] que je mentionnerais
dans mon projet de recherche.

Médiation scientifique

La diffusion des connaissances scientifiques à tout public est selon moi un aspect très
important de la vie académique, donc je voudrais discuter de mes activités de médiation.

Durant ma thèse, j’ai pu animé des ateliers et des visites guidées de l’exposition Dans
ma cuisine pour des classes de collège et lycée, en tant que bénévole à la Maison des

5. Ce projet a les mêmes objectifs concrets que le projet ANR Safe AI through Formal methods (SAIF) [53],
mais mobilise les outils mathématiques utilisés sont différents.



Mathématiques et de l’Informatique. Durant des stages organisés par l’organisation Un Peu de
Bon Science, j’ai initié des lycéen·es à la recherche en informatique en leur faisant découvrir
les diagrammes de cordes et la vie quotidienne dans un laboratoire. À l’école North Bridge
House Senior Hampstead à Londres, j’ai organisé et animé un mini-cours de deux jours
sur le calcul ZX [11], une application des diagrammes de cordes pour le calcul quantique.

Ces deux derniers points me tiennent tout particulièrement à cœur, car ils montrent
qu’il est possible d’aborder des sujets à la pointe de la recherche dans mon domaine avec
des élèves non initié·es.
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