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Abstract

Quotient types are quite common in mathematics but they are rather difficult
to implement in a programming language. For instance, one can easily define
the type of pairs of integers Int× Int, but in order to define the type of rational
numbers, one needs to quotient Int× Int by the relation (p, q) ∼ (r, s)⇔ ps = rq,
which is easier said than done. In the framework of monadic programming,
datatypes are free algebras for a monad. Not all algebras for a monad are free,
but they are all quotients of free algebras. An algebra for a monad is said to
be projective if it is both a quotient and a subalgebra of a free algebra. We show
that a natural family of projective algebras can be seen as algebras for a quotient
monad. In other words, when a quotienting operation is nice enough that 1)
the resulting algebra is a subalgebra of the free algebra and 2) it satisfies some
naturality condition, then we obtain a monad that models the quotient type.

1 Introduction

In type theory, a major goal is to reproduce the reasoning behind common mathe-
matical constructions within a type system. For instance, most type systems will
deal with product types and sum types that correspond to the well known Carte-
sian product and disjoint union of sets. In the case of products, one realizes that
the projections πA : A × B → A and πB : A × B → B satisfy a simple universal
property that characterizes the product (up to isomorphism), and this property can
be encoded in the type system to define product types.

One very powerful idea mathematicians use is quotients. They are very useful
to group objects together when they satisfy similar properties to abstract away from
these properties and see each group as an object on its own. For instance, the set of
positive rationals is obtained by quotienting the set N×N by the relation (p, q) ∼
(r, s)⇔ ps = rq. In simple terms, (p, q) ∼ (r, s) exactly when the two pairs represent
the same ratio. Thus, in order to manipulate ratios of natural numbers, we do not
bother with the several possible representations in N×N, and we work with the
quotient Q+.

Even though quotients also satisfy a universal property (e.g. they are coequaliz-
ers), the latter is hard to implement in a type system, and modelling quotient types
has been a challenge.

One option is to avoid quotients completely and work with setoids instead of
sets. A setoid is a set S along with an equivalence relation∼ kept explicit (often with
a proof that ∼ is an equivalence relation). This is not always satisfactory because
equality in S is different from ∼, so one alwyas needs to make sure they are doing
things that are compatible with ∼ (e.g.: a function f must satisfy x ∼ y =⇒ f (x) =
f (y)). At the other extreme, there is Homotopy Type Theory where quotient types
can be constructed as a consequence of the axiom of univalence.
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A simple idea that could help with quotienting is canonical representatives. If
there is an element of S for each equivalence class of S/ ∼, say chosen by s : S/ ∼→
S, then one could think of the image of s as the quotient. For example, the equiva-
lence class of ratios in Q+ each contain a unique reduced fraction p

q (no prime factors
in common between p and q). Thus, we could define a positive rational number as
being a reduced fraction of two natural numbers. Unfortunately, this breaks when
we want to do arithmetic, namely, if p

q and r
s are reduced, then p

q ·
r
s = pq

rs may not
be reduced.

In the context of monadic programming, types are implemented as free algebras
of a monad. This makes it impossible to work directly with quotients because, by
definition, they are not free. However, there are some cases where quotients are
nice enough that one can pick canonical representatives that are compatible with the
monad structure. Such an algebra is called projective. Informally, our main results
states that when you can define projective algebras globally, you can actually define
a new datatype that models these algebras.

2 Background

In this section, we give the crucial definitions and results about monads and algebras
that will be needed in the paper. We also give a couple of conrete examples of
projective algebras. We assume the reader is familiar with basic category theory.

2.1 Monads and Algebras

Definition 1 (Monad). A monad on a category C is a triple comprised of an endo-
functor M : C→ C and two natural transformations η : idC ⇒ M and µ : M2 ⇒ M
called the unit and multiplication respectively that make (1) and (2) commute.

M M2 M

M

Mη

µ
idM

ηM

idM

(1)
M3 M2

M2 Mµ

Mµ

µM

µ (2)

Definition 2 (M–algebra). Let (M, η, µ) be a monad on C, an M–algebra is a pair
(X, x) consisting of an object X and morphism x : MX → X in C such that (3) and
(4) commute.

X MX

X
idX

ηX

x (3)
M2X MX

MX X

Mx

µX

x

x

(4)

Definition 3 (Homomorphism). Given two M–algebras (X, x) and (Y, y), an M–
algebra homomorphism h : (X, x) → (Y, y) is a morphism h : X → Y in C making
(5) commute.

MX MY

X Y

x

Mh

y

h

(5)
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For a monad M, the category of M-algebras and their homomorphisms is called
the Eilenberg–Moore category of M and denoted EM(M). We denote UM : EM(M)→
C the forgetful functor sending an M-algebra (X, x) to X and a homomorphism to
its underlying morphism. This functor has a right adjoint FM : C→ EM(M), called
the free M–algebra functor, it sends an object X to (MX, µX), which is an M–algebra
by the R.H.S. of (1) and (2).

The image of the free algebra functor FM can be identified with the Kleisli cat-
egory of M, denoted Kl(M). The objects of Kl(M) are objects of C, but morphisms
in HomKl(M)(A, B) are exactly the morphisms in HomC(A, MB). We denote Kleisli
morphisms in HomKl(M)(A, B) by A  B. Kleisli composition is denoted ◦M and

defined by f ◦M g = µC ◦Mg ◦ f for A
f
 B

g
 C, and the identity Kleisli morphism

is ηA : A A.
The universal property of free algebras states that for any morphism f : A→ MB,

there is a unique M–algebra homomorphism h : (MA, µA) → (MB, µB) such that
h ◦ ηA = f . The naturality of η and the R.H.S. of (1) implies that h = µB ◦M f . We
infer that sending A to (MA, µA) and f : A  B to the unique µB ◦M f yields an
embedding Kl(M)→ EM(M) whose image is precisely the free algebras.

Note that any M–algebra (X, x) is a quotient of the free M–algebra on X, indeed
(4) can be seen as stating x : (MX, µX) → (X, x) is a homomorphism, and x is epic
because it has a right inverse ηX . If (X, x) is also a subalgebra of FMX, we say it is
projective.

Definition 4 (Projective algebra). An M–algebra (X, x) is called a projective algebra
if there is a monic homomorphism h : (X, x) ↪→ (MX, µX). We obtain the following
commutative diagram.

MX MMX MX

X MX X

x

Mh

µX

h

Mx

x

x

(6)

2.2 (Non)-Examples of Projective Algebras

Let Ab be the category of abelian groups, it has a straightforward forgetful functor
U to the category of sets (forget the group opertaion). This functor has a right adjoint
F and the composite FU is a monad, that we write TAb, such that Ab ∼= EM(TAb).

Let P = {2, 3, 5, 7, 11, . . . } be the set of prime numbers, one can see Q+, the set of
positive rational numbers, as the free abelian group on P. Namely, the multiplicative
group Q+ is the image of P under the free algebra functor FTAb : Set → EM(TAb).
We will exhibit one quotient of Q+ that is projective and one that is not.

Let K = 〈p ∈ P \ {2}〉 be the subgroup of Q+ generated by all the primes except 2.
Quotienting by K yields the additive group of integers Z. Indeed, each equivalence
class of Q+/K has a single element of the form 2z with z ∈ Z and multiplying [2z]

with [2z′ ] yields [2z+z′ ] by a standard property of exponents. Furthermore, sending
z ∈ Z to 2z ∈ Q+ is a group homomorphism (by the same property of exponents),
thus Z is a projective TAb–algebra as witnessed by the aforementionned homomor-
phisms

Q+ → Q+/K ∼= Z→ Q+.

If we further quotient by the subgroup 2Z to obtain the two element group, we
note that there can be no homomorphism Z/2Z→ Q+ because no positive rational
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has order 2 like 1 ∈ Z/2Z. In fact, since any free abelian group has no element of
order 2, we conclude that Z/2Z cannot be a projective TAb–algebra.

Our first example can be made quite more general by noting that Z is the free
abelian group on a singleton. Let M be a monad on Set that preserves injections and
surjections, if f : X → Y is a surjective function and g : Y → X is its right inverse,
one can check that (7) is commutative, hence (MX, µX) is a projective algebra.

MMX MMY MMX

MX MY MX

µX µY µX

MM f

M f

MMg

Mg

(7)

This is not very interesting as any free algebra is already a quotient and subalgebra
of itself (take f = id), hence is projective. Nonetheless, we can extract a bit of
intuition by asking what general condition we should put on M f and Mg to obtain
a projective algebra. The option we will explore is split idempotents.

Definition 5 (Idempotents). Let C be a category, a ”morphism” f : A → A in C is
called idempotent if f ◦ f = f . It is called split idempotent if there exist morphisms
s : E→ A and r : A→ E such that s ◦ r = f and r ◦ s = idE. We can show that split
idempotents are idempotent by

f ◦ f = s ◦ r ◦ s ◦ r = s ◦ idE ◦ r = f .

We call E the splitting of the idempotent. It is clear (because of their inverses) that r
is epic and s is monic.

This yields a very simple way to find projective M–algebras. If f : (MX, µX)→
(MX, µX) is a split idempotent in EM(M), the splitting will be a projective algebra
as shown below.

MMX ME MMX

MX E MX

µX

Mr

e

r

Ms

µX

s

f

M f

(8)

Let us give a concrete example of this with the monad for pointed semilattices.

Definition 6 (Pointed semilattice). A pointed semilattice is a set X equipped with a
binary operation ⊕ : X× X → X (written infix) and a distinguised element (called
point) ? ∈ X such that for any x, y, z ∈ X:

x⊕ x = x idempotence
x⊕ y = y⊕ x commutativity

x⊕ (y⊕ z) = (x⊕ y)⊕ z associativity

A homomorphism of pointed semilattices (X,⊕X , ?X) → (Y,⊕Y, ?Y) is a function
f : X → Y that commutes with the operation and the point, i.e.: ∀x, x′ ∈ X, f (x⊕X
x′) = f (x) ⊕Y f (x′) and f (?X) = ?Y. We denote PSLat the category of pointed
semilattices.
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One can show that the free pointed semilattice on X is the finite powerset of
X + 1 := X t {?} with the operation being union and the point being the singleton
{?}.

Let K : P(X + 1) → P(X + 1) be defined by sending a finite S ⊆ X + 1 to
S ∪ {?}. This is idempotent because adding ? twice is the same thing as adding it
once. Moreover, K is a homomorphism (essentially) because it commutes with union
of sets and sends {?} to itself.

Following our thread of split idempotents, one checks that in Set, any idempotent
f : A → A is split by considering the image of f : A � Im( f ) ↪→ A. Hence, it
remains to check the splitting of K is a pointed semilattice.

The image of K contains all the sets that contain ?, and we note the union of
two such sets still contains ? and the point {?} is in the image of K. Therefore,
Im(K) is indeed a pointed semilattice and moreover it is a quotient and subalgebra
of P(X + 1), so it is projective. This is our first example of a projective and not free
algebra.

Actually, this argument works for any set X, so we have an idempotent KX and a
projective algebra Im(KX) for every X, and this family is natural (in the categorical
sense that we develop below). Our main result states that this is enough to obtain
a monad structure on the assignment X 7→ Im(KX). In this case, one can identify
the resulting monad with P + 1 = X 7→ PX + 1, which is the free semilattice with
bottom monad (a semilattice with bottom is a pointed semilattice satisfying the
bottom equation: x⊕ ? = x).

3 Main Result

Let us generalize the idea above. For any object X in C, we want an idempotent
endomorphism on the free algebra (MX, µX). Since the Kleisli category
KL(M) contains precisely the free algebras, equivalently, we want a Kleisli mor-
phism KX : X X that is idempotent. Moreover, we want this family to be natural
in X, thus we need an idempotent natural transformation K : idKl(M) ⇒ idKl(M).

Remark 7. We will soon see that this K induces an idempotent natural transformation
K : M ⇒ M and this may be a better starting point because it is enough for our
purposes. However, since K does not induce the K described above, we still start
from K and at some point we only use K.

Let us show some properties of K. First, idempotence says that KX ◦M KX = KX ,
or equivalently,

µX ◦M(KX) ◦ KX = KX . (9)

Next, we can apply naturality of K to different morphisms in Kl(M) to obtain differ-
ent identities.

MX X

MX X

idMX

KMX KX

idMX

(10)
MMX X

MMX X

KMMX

µX

KX

µX

(11)
MX Y

MX Y

M f

KMX KY

M f

(12)

Now, recall that these diagrams live in Kl(M), thus, the following equations are de-
rived from each diagram.

µX ◦M(KX) ◦ idMX = µX ◦M(idMX) ◦ KMX (10)
µX ◦M(KX) ◦ µX = µX ◦M(µX) ◦ KMMX (11)
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µY ◦M(KY) ◦M f = µY ◦MM f ◦ KMX (12)

From this, we will construct a monad MK whose free algebra on X is the image of
K applied to the free M–algebra on X. We will also construct a monad map M⇒ MK

expressing MK as a quotient of M.

Proposition 8. Defining KX : MX → MX = µX ◦ M(KX), we can show that KX is
idempotent.

Proof. We show that µX ◦ M(KX) ◦ µX ◦ M(KX) = µX ◦ M(KX) by paving the fol-
lowing diagram.

MX MMX

MMX MMMX

MX MMX MX

M(KX)

M(KX)

(a)
µX

µX

MM(KX)

(b)

M(µX)

µMX

(c)

M(KX) µX

(13)

(a) Apply M to (9).

(b) Naturality of µ.

(c) Associativity of µ.

Furthermore, since this KX is the image of KX under the embedding Kl(M) →
EM(M), we obtain that KX is an M–algebra endomorphism on (MX, µX). This is
restated and proven for completeness below.

Lemma 9. For any X, we have KX ◦ µX = µX ◦M(KX).

Proof. We pave the following diagram.

MMX MMX

MMMX

MMX

MX MX

µX

KX

µX

M(KX)

M(KX) µX

M(µX)

µMX

MM(KX)
(a)

(b) (c)

(d)

(14)

(a) Def of KX and functoriality of M.

(b) Naturality of µ.

(c) Associativity of µ.

(d) Def of KX .

Next, we would like KX to be split and define MK(X) as the splitting of KX . One
way to formulate this property which will be easier to work with is stated in the
following lemma.
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Lemma 10. An idempotent morphism f : A→ A in C is split if and only if the equalizer
of f and idA exists.

Now, if every idempotent KX is split, we can define a subfunctor MK of M as
follows. For X ∈ C0, let MKX be the equalizer of KX , idMX : MX → MX. Namely,
there is (a monic) ιX : MKX → MX satisfying KX ◦ ιX = ιX such that for any
e : Y → MX satisfying KX ◦ e = e, there is a unique morphism ! : Y → MKX making
(15) commute.

Y

MKX MX MX

e
!

ιX

KX

idMX

(15)

In order to give the action of MK on morphisms, we need the following lemma.

Lemma 11. K is a natural transformation M⇒ M.

Proof. We need to show that for any f : X → Y, KY ◦M f = M f ◦ KX . We have the
following derivation.

KY ◦M f = µY ◦M(KY) ◦M f def. K
= µY ◦MM f ◦ KMX by (12)
= M f ◦ µX ◦ KMX naturality of µ

= M f ◦ µX ◦M(KX) by (10)

= M f ◦ KX def. K

Remark 12. From this point, we do not have to use any hypothesis about K. Thus,
starting with an idempotent natural transformation K : M ⇒ M such that KX :
MX → MX is split and an M–algebra homomorphism (with the free algebra struc-
ture on MX), we can develop the rest of the section. Another very close starting
point will be used in the application section.

Now, for any f : X → Y, we know that both squares on the R.H.S. of diagram
(16) commute (id is trivally a natural transformation).

MKX MX MX

MKY MY MY

ιX

MK f

KX

idMX
M f M f

ιY

KY

idMY

(16)

From this, we can infer that M f ◦ ιX equalizes KY and idMY. Indeed, we have

KY ◦M f ◦ ιX = M f ◦ KX ◦ ιX

= M f ◦ idMX ◦ ιX

= idMY ◦M f ◦ ιX .

Then, from the universality of MKY, there is a unique morphism MK f : MKX →
MKY making (16) commute. The uniqueness of MK f in (16) also shows that MK( f ◦
g) = MK f ◦MKg, thus MK is a functor C→ C.
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Proposition 13. The family {ιX | X ∈ C0} is a natural transformation ι : MK ⇒ M with
monic components, so MK is a subfunctor of M.

Proof. The naturality follows trivially from the commutativity of left square in (16).
The monicity comes from the standard result that equalizers are monic.

Observe that by idempotence, KX also equalizes KX and idMX , so we get the
following diagram.

MX

MKX MX MX

KXK̂X

ιX

KX

idMX

(17)

In the sequel, we will denote by K̂X the unique morphism satisfying ιX ◦ K̂X = KX .

Lemma 14. For any X ∈ C0, K̂X ◦ ιX = idMK X .

Proof. Using the definitions of K̂X and ιX , we have

ιX ◦ K̂X ◦ ιX = KX ◦ ιX = idMX ◦ ιX = ιX ◦ idMK X .

The lemma follows by monicity of ιX .

Remark 15. One way to summarize this is to say that MKX is the splitting of KX with
ιX ◦ K̂X being the monic-epic factorization of KX .

Proposition 16. The family {K̂X | X ∈ C0} is a natural transformation with epic compo-
nents K̂ : M⇒ MK.

Proof. First, we claim that for any f : X → Y, MK f ◦ K̂X = K̂Y ◦M f . We have the
following derivation.

ιY ◦MK f ◦ K̂X = M f ◦ ιX ◦ K̂X naturality of ι

= M f ◦ KX def of K̂X

= KY ◦M f naturality of K

= ιY ◦ K̂Y ◦M f def of K̂Y

The claim follows since ιY is a monomorphism. The components K̂X are epimor-
phisms because they have ιX as a right inverse by Lemma 14.

3.1 Monadicity of MK

Next, we want to show that MK is a monad with unit ηK := K̂ · η and multiplication
µK := K̂ · µ · (ι � ι).1 We divide the proof in multiple lemmas.

Lemma 17. For any X ∈ C0, µX ◦M(ιX) = KX ◦ µX ◦M(ιX).
1We write � for the horizontal composition of natural tranformations.
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Proof. We pave the following diagram.

MMX MX

MMKX MMMX MMX

MMX MX

µX

MM(KX)

M(KX)

(c) M(KX)

M(ιX)

M(ιX)

(a) (b) µMX

M(µX)
(d) µX

µX

(18)

(a) By defintion of MK.

(b) Functoriality of M and def of KX .

(c) By naturality of µ.

(d) Associativity of µ.

Lemma 18. Anagolously to (10), we also have µX ◦M(KX) = µX ◦ KMX .

Proof. We pave the following diagram.

MMX MMMX MMX

MMMX

MMX MX

M(KX)

MM(KX)

M(KMX)

KMX

M(µX)

(a)
µX(b)

M(µX)

µMX
(c)

µX

(19)

(a) Apply M to (10).

(b) Def of K.

(c) Associativity of µ.

Now we can prove one side of the unit diagram for the monad MK commutes.

Lemma 19. For any X ∈ C0, µK
X ◦MK(ηK

X) = idMK X .

Proof. We will show that ιX ◦ µK
X ◦MK(ηK

X) = ιX from which the result follows by
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monicity of ιX . We pave the following diagram.

MKX MK MX MK MK

MX MMX MMKX

MMX MMX

MX MX

MX MKX

MK(ηX) MK(K̂X)

ιMK X

M(ιX)

µX

K̂X

ιX

ιX

KX

µX

M(KX)

M(ιX)

ιX

M(ηX) M(K̂X)

ιMX

M(KX)

KX

µXidMX

MK(ηK
X)

µK
X(f)

(a) (b)

(c)

(d)

(e)

(g)

(h)

(i)

(20)

(a) Naturality of ι.

(b) Naturality of ι.

(c) Monadicity of (M, η, µ).

(d) Apply M to KX = ιX ◦ K̂X .

(e) Apply M to KX ◦ ιX = ιX .

(f) KX ◦ ιX = ιX .

(g) Lemma 9.

(h) Lemma 9.

(i) Def of K̂.

Now for the other side of the unit diagram.

Lemma 20. For any X ∈ C0, µK
X ◦ ηK

MK X = idMK X .

Proof. Alternatively, we pave the following diagram.

MKX MMKX MK MKX

MX MMX MMX MK MX

MMX

MKX MX MMX

ηMK X

ιX

ηMX

idMX
µX

M(ιX)

idMK X

K̂X

M(ιX)

KMX

µX

K̂MX

ιMX

K̂MK X

MK(ιX)

ι�ι
M(KX)

µX

(a) (b)

(c)

(d)

(f)

(g)

(e)

(21)
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(a) Naturality of η.

(b) Naturality of K̂.

(c) Lemma 14.

(d) Monadicity of (M, µ, η).

(e) ιX equalizes KX and idMX .

(f) Definition of K̂MX .

(g) Lemma 18.

Lastly, we show that µK is associative.

Lemma 21. For any X ∈ C0, µK ◦MKµK = µK ◦ µK MK.

Proof. We pave the following diagram.

MK MK MK MK MMK MK MM MK M MK MK

MMK MK MMMK MMM MM MK M

MMMK MMM MM

MMK M

MK MK MMK MM M MK

(ι�ι)MK

µMK

K̂MK

ι�ι

µ K̂

MK(ι�ι)

MKµ MK K̂

ι�ι

µ

K̂

ιMK MK

MιMK

MK ιMK MK Mι

ιMK Mι

MιMK

ιMMK

MMι

ιMM

Mµ

ιM MK ι

ιM

MKK

MK

KMK

µMK

MMι

µM

Mµ

(a) (b) (c)

(g)

(h)

(j)

(d)

(e)

(f)

(i)

(a) Naturality of ι.

(b) Naturality of ι.

(c) Naturality of ι.

(d) Def of K̂.

(e) Naturality of ι.

(f) Lemma 17 acted on the left by M.

(g) Lemma 17 acted on the right by MK.

(h) Naturality of µ.

(i) Associativity of µ.

(j) Def of K̂MK X .

Theorem 22. The triple (MK, ηK, µK) is a monad.

Proof. We have to show the following diagrams commute.

MK (MK)2 MK

MK
1MK

MηK

µK
1MK

ηK MK

(22)

(MK)3 (MK)2

(MK)2 M

µK MK

MKµK

µK

µK

(23)

Lemmas 19, 20 and 21 respectively show the commutativity of the L.H.S. of (22), the
R.H.S. of (22) and (23).
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3.2 Relating M–algebras and MK–algebras

We already have natural transformations ι and K̂ between M and MK in both direc-
tions, but it is not enough to relate their algebras. For that, we would need for ι and
K̂ to be monad maps. Unfortunatley, while K̂ is a monad map as shown below, we
have to proceed differently for the other direction.

Theorem 23. The natural transformation K̂ : M⇒ MK is a monad map.

Proof. We have to show the following diagrams commute.

idC M

MK
ηK

η

K̂ (24)

M2 (MK)2

M MK

µ

K̂�K̂

µK

K̂

(25)

(24) is trivial because that is the definition of ηK. For (25), we pave the following
diagram.

MMX MK MX µK
X

MMX MK MX

MMX MMX

MX MMX

MX MKX
K̂X

KMX

K̂X
KX

µX

KMX

KMX

K̂MX

ιMX

MK(K̂X)

MK(ιX)

ιMX

MK(KX)

M(KX)

µX

K̂X

µX

µK
X

K̂�K̂

µX

(e)

(a) (b)

(c) (d)

(f)

(g)

(h)

(26)

(a) Def of K̂MX .

(b) Def of K̂X .

(c) Idempotence of K̂MX .

(d) Naturality of ι.

(e) Lemmas 9 and 18.

(f) Lemma 18.

(g) Paths are equal.

(h) Lemma 14 and KX = ιX ◦ K̂X .

From a standard result, we obtain a functor UK : EM(MK)→ EM(M) that sends
an algebra (A, α) to (A, α ◦ K̂A) and acts trivially on morphisms. It is fully faithful
because K̂ has epic components.

To go in the other direction, our first attempt was to use the embedding ι : MK ⇒
M in the following way. Given an M–algebra α : MA → A, we expected that the

composition MK A MA a
ιA α was the natural MK–algebra on A corre-

sponding to α.
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However, in general α ◦ ιA is not an MK–algebra because it might not satisfy the
unit law, that is,

α ◦ ιA ◦ ηK = idA.

In other words, ι is possibly not a monad map (as we will see in the application in
to C↓).

3.3 Main Theorem

We summarize our abstract results in this main theorem, the third point will be
proven later.

Theorem 24. Let (M, η, µ) be a monad on C and assuming one of the following holds:

- There is an idempotent natural transformation K : idKl(M) ⇒ idKl(M) such that for
every X ∈ C0, KX := µX ◦MKX is split.

- There is an idempotent natural transformation K : M ⇒ M such that for every
X ∈ C0, KX is split and an algebra homomorphism (MX, µX)→ (MX, µX).

- There is a natural transformation K : idC ⇒ M such that for every X ∈ C0, KX :=
µX ◦MKX is split and idempotent.

Then, there is a monad (MK, ηK, µK) such that MKX is the splitting of KX and MK is a
quotient of M.

Remark 25. The three conditions are very close to each other, and in fact the second
and third are equivalent, but the first is not. Indeed, the naturality condition in the
first condition is stronger than for the other two.

4 (Non-)Examples

Here we list examples and non-examples we encountered while studying this con-
struction.

4.1 Semilattices with Bottom

Defining KX : P(X + 1) → P(X + 1) = S 7→ S ∪ {?}, we indeed find that this is
an idempotent natural transformation P(−+ 1) ⇒ P(−+ 1) whose components
are homomorphisms (with respect to the free algebra structure). Therefore, we can
apply the general construction and one can check that we obtain the monad P + 1
that is presented by semilattices with bottom.

4.2 Convex Semilattices with Bottom

The motivating example for this paper comes from my first paper on the variants
of the convex powerset monad [1]. I removed the probabilistic content to have a
simpler example in last section, but here is the full example. It can be safely skipped
and it assumes you have a read [1].

Let M = C(· + 1) be the monad of non-empty finitely generated convex sets
of subdistributions, we will show that the monad C↓ can be constructed with the
procedure detailed above. The main idea is that the operation of ⊥–closure satisfies
the properties of K.
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Definition 26. Let X be a set and let S ∈ C(X + 1). We say that S is ⊥–closed if for
all ϕ ∈ S,

{ψ ∈ D(X + 1) | ∀x ∈ X, ψ(x) ≤ ϕ(x)} ⊆ S.

For a set X, we define KX : X → C(X + 1) = x 7→ cc ({δx, δ?}). We will first
show that KX = µX ◦ C(KX + 1) is the operation of ⊥–closure, then that KX satisfies
the properties described in the previous sections and finally detail the monad we
obtain.

Lemma 27. Let X be a set, for any S ∈ C(X + 1), KX(S) is the smallest ⊥–closed set
containing S.

Proof. See Theorem 35 in [1].

Lemma 28. The family KX : X → C(X + 1) is natural.

Proof. For any f : X → Y, we have

KY( f (x)) = cc
({

δ f (x), δ?
})

= C( f + 1)(cc ({δx, δ?})) = C( f + 1)(KX(x))).

Lemma 29. The family KX : C(X + 1)→ C(X + 1) satisfies the following properties:

1. it is natural,

2. each component is idempotent, and

3. each component is a homomorphism between the free C(·+ 1)–algebras.

Proof. 1. This is a corollary of K : idSet ⇒ C(· + 1) being natural as shown in
the following derivation. We need to show that for any f : X → Y, we have
KY ◦ C( f + 1) = C( f + 1) ◦ KX . This follows from the following derivation.

KY ◦ C( f + 1) = µY ◦ C(KY + 1) ◦ C( f + 1) def of KY

= µY ◦ C(C( f + 1) + 1) ◦ C(KX + 1) nat of K
= C( f + 1) ◦ µX ◦ C(KX + 1) nat of µ

= C( f + 1) ◦ KX def of KX

2. Since KX(S) is ⊥–closed, it is the smallest ⊥–closed containing itself, thus
KX(KX(S)) = KX(S).

3. This holds because KX is the image of KX (seen as a Kleisli morphism) under
the embedding of the Kleisli category of C(·+ 1) into EM(C(·+ 1)).

Remark 30. Apart from the second point, the above proof is very general. Namely,
it shows that starting from a natural transformation K : idC ⇒ M such that K
is idempotent, we can derive all the previous sections. This is the third item of
Theorem 24.

We find that C↓ is the monad of non-empty finitely generated ⊥–closed convex
sets of subdistributions with the unit being x 7→ KX(x) = KX ◦ ηX . For the multipli-
cation, there is a slight surprise; it turns out that the multiplication of ⊥–closed sets
is already ⊥–closed, so there is no need to apply ⊥–closure again as in the general
case.

In particular, this means the inclusion ι : C↓ ⇒ C(·+ 1) is not a monad map only
because it does not commute with the units of the two monads.
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5 Conclusion

Let (M, η, µ) be a monad on a category C where idempotents split. If you have
a natural family of idempotent homomorphisms of free M–algebras MX → MX
given in either of the following ways, then you obtain a monad MK by splitting
these idempotents.

- An idempotent natural transformation K : idKl(M) ⇒ idKl(M).

- An natural transformation K : M⇒ M such that KX is a homomorphism and
it is split.

- A natural transformation K : idC ⇒ M such that µ ◦MK is idempotent.
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