
Lecture Notes for COMP 552 - Fall 2018
Ralph Sarkis

March 14, 2019

These are my lecture notes taken during the Combinatorial Optimiza-
tion class in fall 2018.

Contents

Course Introduction 1

Maximum Matchings 2

Max-flow Min-cut 2

Maximum Cardinality Matching 7

An introduction to polyhedral combinatorics 11

Characterizing closed convex sets 11

Characterizing bounded polyhedra 13

Characterizing unbounded polyhedra 15

Optimizing over the matching polytope 17

Course Introduction

This class will be taught by Bruce Alan Reed. The TA is Mashbat
Suzuki, his office hours are on Thursday 1:00-5:00pm and on Friday
1:00-3:00pm. There will be optional problem sets given at each lecture
and the grading will be 40% for the midterm and 60% for the final.
More information can be found on the MyCourses page for this
course.

Here is a list of problems that are in the scope of this course. More
information about these can be found online and in the slides of the
first lecture.

• Finding the maximum flow in a network.

• Finding the minimum cut in a network.

• Finding the largest matching in a graph.

• The knapsack problem.

Some useful terms we will use.

lecture notes for comp 552 - fall 2018 2

Definition 1 (Graph coloring). Let G = (V, E) be a graph, a k-
coloring of G is a function f : V → {1, . . . , k} such that for edges
(u, v) ∈ E, f (u) 6= f (v).

Definition 2 (Stable set). Let G = (V, E) be a graph, a stable set of G
is a subset S ⊆ V such that there no vertices in S are adjacent.

Definition 3. Let G = (V, E) be a graph, a clique in G is a subset
C ⊆ V such that all pairs of vertices in C are adjacent.

Other subjects we are going to cover include linear programming,
the ellipsoid method, matroids, submodular functions and multi-
commodity flow.

Maximum Matchings

Max-flow Min-cut

Definition 4 (Flow network). A flow network is a digraph1 G = 1 A digraph is a graph where edges are
ordered pairs of vertices(V, E) with a source and target/sink vertices denoted s and t respec-

tively and a capacity function c : E→N.

The intuition for this object is a network of nodes with a source
that generates resources and sends them to a target. The capacity of
an edge is the amount of resources that can go through it.

Example 5. The road network forms a flow network since each road
has a maximum amount of vehicles that can traverse it every hour.
The source and target can be two cities, or two neighborhoods. The
pipeline network for sending oil can also be seen as a flow network.

Remark 6. We will assume that there are no parallel edges, no edges
entering s and no edges leaving t.

Definition 7 (s, t-cut). An s, t-cut is a partition (A, B) of the vertices
with s ∈ A and t ∈ B. The capacity of the cut is denoted cap(A, B)
and it is equal to ∑e∈∂+(A) c(e).2 2 We use ∂+(S) to denote the outgoing

edges of a subset S of vertices, ∂−(S)
denotes the incoming edges.Question 8. Can you design an algorithm that finds the cut with minimum

capacity for any graph ? (This is called the min-cut problem)

Definition 9 (s, t-flow). Let D = (V, E) be a digraph and s 6= t ∈ V. A
map f : E → N is an s, t-flow if it is smaller than the capacity c and
∀x ∈ V \ {s, t}, the following holds3: 3 We will call this the flow conservation

property.

∑
e∈∂+(x)

f (e) = ∑
e∈∂−(x)

f (e)

We define the value of an s, t-flow as follows:

val(f) = ∑
e∈∂+(s)

f (e)

lecture notes for comp 552 - fall 2018 3

Question 10. Can you design an algorithm that finds the flow with maxi-
mum value for any graph ? (This is called the max-flow problem)

We will answer the two previous questions with the Ford-Fulkerson
algorithm. However, we will try to build towards it by starting with
a greedy algorithm that attempts to find the max flow. Here is our
attempt:

1. Set f (e) = 0 for all e ∈ E.

2. Find a path P from s to t such that f (e) < c(e) for any e ∈ P.

3. Augment the flow along path P.

4. Repeat until you get stuck, namely, you cannot find more paths.

It is not clear why this does not work but we will see an example
where the greedy algorithm does not find the max flow.

s t

u

v

20

10

30

10

20

Figure 1: Flow network for example 11.

Example 11. On the figure beside, if you start the greedy algorithm
with the path s → u → v → t and augment the flow on it by 20, you
will end up with the following flow of value 20:

s t

u

v

20/20

0/10

20/30

0/10

20/20

Since there is no more valid path, you are stuck, but the max flow has
value 30 (try to find it). One can observe that if we started with the
path s→ v→ t, the greedy algorithm would have found the max flow.

In order to get to the Ford-Fulkerson algorithm, we need one final
key notion.

u v

u v

6/11

5

6

Figure 2: Example of how an edge gets
transformed in residual graph.

Definition 12 (Residual graph). Let (G, s, t, c) be a flow network and
f an s, t-flow, the residual graph is G f = (V, E f) where E f = {e ∈
E | f (e) < c(e)} ∪ {eR | f (e) > 0} (eR is the edge e in the reverse
direction). It also has the new capacity function c f , that behaves like
so: c f (e) = c(e)− f (e) and c f (eR) = f (e).

Definition 13. An augmenting path of f is a path in G f .

Definition 14. The bottleneck capacity of an augmenting path P is the
minimum capacity of the edges in P.

lecture notes for comp 552 - fall 2018 4

We first define the Augment subroutine that we will use in the
algorithm.

Augment(f , c, P)

1 b = bottleneck capacity of P
2 for each edge e ∈ P
3 if e ∈ E
4 f (e) = f (e) + b
5 else
6 f (eR) = f (eR)− b
7 return f

A key property of this subroutine is that the flow returned has
value equal to the value of f plus the bottleneck of P.

Now, we give the algorithm (look in the margin for the pseudo
algorithm):

Ford -Fulkerson(G, s, t, c)

1 for all e ∈ E, f (e) = 0.
2 G f = residual graph of G and f .
3 while there is an augmenting path P in G f
4 f = Augment(f , c, P)
5 Update G f .
6 return f .

1. Set f (e) = 0 for all e ∈ E.

2. Find an augmenting path in G f .

3. Augment the flow using the previous subroutine.

4. Repeat until there are no more augmenting path.

Question 15. How do you verify the optimality of a flow ?

One way to do this is to find an upperbound for the value of any
flow. That way, if the flow has value equal to the upper bound, then
this flow must be optimal. The sum of the capacities of the edges
going out of s is an upper bound4. This upper bound is not enough 4 Also, the sum of the capacities of the

edges going in t.for a general graph. We want to find another upper bound.
We start with some important results.

Lemma 16 (Flow-value). Let f be any flow and (A, B) be any cut. The net
flow across (A, B) is the value of f . The net flow is defined like so:

∑
e∈∂+(A)

f (e)− ∑
e∈∂−(A)

f (e) = val(f)

Proof. Define the following partition of edges. u

Head

v

Tail

Figure 3: Convention for head and tail
of edge.

E1 = {e ∈ E | head and tail in A}
E2 = {e ∈ E | only head in A}
E3 = {e ∈ E | only tail in A}

lecture notes for comp 552 - fall 2018 5

We can now expand val(f):

val(f) = ∑
e∈∂+(s)

f (e)

= ∑
e∈∂+(s)

f (e) + ∑
v∈A\{s}

 ∑
e∈∂+(v)

f (e)− ∑
e∈∂−(v)

f (e)


= ∑

e∈E2

f (e)− ∑
e∈E3

f (e)

Theorem 17 (Weak duality). Let f be any flow and (A, B) be any cut.
Then val(f) ≤ cap(A, B).

Proof.

val(f) = ∑
e∈∂+(A)

f (e)− ∑
e∈∂−(A)

f (e)

≤ ∑
e∈∂+(A)

f (e)

≤ ∑
e∈∂+(A)

c(e)

= cap(A, B)

Corollary 18. Let f be any flow and let (A, B) be any cut. If val(f) =

cap(A, B), then f is a max-flow and (A, B) is a min-cut.

Proof. For any flow f ′, val(f ′) ≤ cap(A, B) = val(f) and for any cut
(A′, B′), cap(A′, B′) ≥ val(f) = cap(A, B).

With the following two theorems we will show the correctness of
the Ford-Fulkerson algorithm (we will show both theorems at the
same time).

Theorem 19 (Augmenting path theorem). A flow f is a max-flow if and
only if no augmenting paths exist in the residual graph G f .

Theorem 20 (Max-flow min-cut). The value of the max-flow is equal to
the capacity of the min-cut.

Proof. We will show the following three conditions are equivalent for
any flow f .

1. There exists a cut (A, B) such that cap(A, B) = val(f).

2. f is a max-flow.

3. There is no augmenting path in G f .

lecture notes for comp 552 - fall 2018 6

The equivalence of 1. and 2. is the max-flow min-cut theorem and the
equivalence of 2. and 3. is the augmenting path theoreom.

(1 =⇒ 2) See previous corollary.
(2 =⇒ 3) We prove the contrapositive, if there is still an augment-

ing path, you can increase the flow so f is not maximum.
(3 =⇒ 1) Let f be a flow with no augmenting path in its residual

graph. Let A be the set of nodes that are reachable from s in G f and B
be the other nodes, (A, B) defines a cut because there is no augment-
ing path, implying t is not reachable. We now state two claims. First,
every edge e going from A to B must have f (e) = c(e), otherwise,
the node in B incident to e would be reachable from s. Second, every
edge e going from B to A must have f (e) = 0, otherwise the node in
B would be reachable from A with a backward edge.

val(f) = ∑
e∈∂+(A)

f (e)− ∑
e∈∂−(A)

f (e)

= ∑
e∈∂+(A)

c(e) by the two claims

= cap(A, B)

Remark 21. The cut defined in the proof above is the min-cut. Hence,
the Ford-Fulkerson algorithm also gives the min-cut.

We now look at the runtime of the algorithm. We assume that the
capacities are integers between 1 and C, m = |E| and n = |V|. Observe
the integrality invariant: throughout the algorithm, the flow values
f (e) and the residual capacities c f (e) are integers.

Theorem 22. The algorithm terminates in at most val(f ∗) ≤ nC iterations.

Proof. Every iteration, you increase the value of the flow by at least
1.

Corollary 23. The running time of Ford-Fulkerson is O(mnC).

Corollary 24. If C = 1, then running time of Ford-Fulkerson is O(mn).

Question 25. Is the generic Ford-Fulkerson algorithm poly-time in input
size (m, n and log(C)) ?

Well, if we represent the network as an adjacency matrix where
the entries are the capacity, we end up with a representation of size
O(n2 log C) (log C bits for each of the n2 entries). Hence, the running
time O(mnC) is not polynomial time in C. There is an example in the
slides showing a case where we need more than O(log C) iterations.

Question 26. If the weights are not integral, does the algorithm converge to
the maximum flow ?

No.

lecture notes for comp 552 - fall 2018 7

Maximum Cardinality Matching

Let G = (A ∪ B, E) be a bipartite graph. In order to find the max
cardinality matching, we use the FF algorithm on the network G′ =
(A ∪ B ∪ {s, t}, E ∪ {(s, v) | ∀v ∈ A} ∪ {(v, t) | ∀v ∈ B}, s, t, c), where
c(s, v) = 1 for all v ∈ A and c(v, t) = 1 for all v ∈ B and c(e) = ∞ for
any other edge (they are directed from A to B).

Proposition 27. The max-flow on this network corresponds to the maximum
cardinality matching.

Proof. Denote val(f ∗) to be the value of the maximum flow and ν(G)

the maximum cardinality matching of G. Since each vertex in A can
only receive one unit of flow and each vertex in B can only output
one unit of flow, each unit of flow corresponds to a pair of matched
vertices. It is then obvious that val(f ∗) = ν(G).

Next, we present an algorithm for the general case.

Definition 28 (Deficiency). def(G) = |V(G)| − 2ν(G).5 5 This corresponds to the number of
vertices which are not matched by a
maximum matching.Definition 29 (M-exposed). Let G be a graph and M a matching of G.

A vertex of G is called M-exposed if no edge of M is incident to v.

Definition 30 (Alternating and augmenting paths). In the same
setting, an M-alternating path is a path where no two consecutive
edges are in the matching and no two consecutive edges are not
matched. If, in addition, the endpoints of the path are M-exposed,
then it is called an M-augmenting path.

Theorem 31. M is a maximum matching of G if and only if there are no
M-augmenting paths in G.

Proof. (⇒) Suppose M is a maximum matching of G and P =

{e1, . . . , ek} is an M-augmenting path, we know that k is odd and
ej ∈ M ⇔ j is even. The symmetric difference M 	 P has one more
edge and we claim it is also a matching of G.

Any vertex not in the path is not affected and for every internal
vertex of the path, we kept a total of one matching edge incident to it.
For the two endpoints, they were not matched by any edge but now
they are. Thus, M	 P is a matching of G.

(⇐) Suppose that M is not a maximum matching, then there is
a matching M′ with one more edge. Let H = M ∪ M′, it is a col-
lection of paths and cycles since the degree of each vertex cannot
exceed 2. Since, there is one more edge in M′, there is at least one
M-augmenting path in H and we are done.

Theorem 32 (Tutte-Berge formula).

def(G) = max
X⊆V

(#odd(G− X)− |X|)

lecture notes for comp 552 - fall 2018 8

Lemma 33. Let G satisfy the formula and XG be the maximizer of the
R.H.S., then every maximum matching of G matches every vertices of XG.

Proof. Suppose that some matching M of G does not match u ∈ XG.
By definition of XG, there is def(G)+ |XG| odd components in G−XG

and each component has at least one vertex that is not matched by M
if we remove XG. When we add |XG|, since u is not matched by M, we
will only be able to match |XG| − 1 more vertices in these components.
In total, we still have at least def(G) + 1 un matched vertices which
contradicts maximality of M.

Proof of Tutte-Berge. (≥) Let X be a subset of V and k = #odd(G− X).
Let M be the maximum matching of G. In each odd component of
G − X, we know one vertex can only be matched with a vertex of X.
Therefore, k− |X| vertices cannot be matched and def(G) ≥ k− |X|.

(≤) Suppose that G is a counter-example with the least number
of vertices. It is easy to see that G has at least one edge. For any
strictly smaller subgraph H, let XH be a subset of V(H) for which
#odd(H − XH) = |XH |+ def(H)6. For all such H, every vertex of XH 6 It exists because G is the smallest

graph not satisfying the inequality.is in every maximum matching of H by the previous lemma.
Suppose there exist v ∈ V that is in every maximum matching of

G, then def(G− v) = def(G) + 1. Thus, the set X = v + XG−v shows
the formula holds. Hence, no such vertices exist. In particular, there is
more than one maximum matching.

For any edge e = {u, v}, we can find an odd cycle C going through
e with E(V) \ {e} contained in the union of two matchings. Let M
and N be maximum matchings such that v is M-exposed and u is
N-exposed7. In M ∪ N, we only have paths and cycles and u is the 7 Note that this implies M matches

u and N matches v as otherwise you
could add e to the matching.

endpoint of one such path P. The other endpoint must be matched by
N, otherwise P would be N-augmenting, it is also M-exposed because
it is the end of the path. If this endpoint is not v, then P ∪ {e} is an
M-augmenting path, so we get a contradiction. If this endpoint is v,
we are done because P has an even number of edges and P ∪ {e} is
the desired odd cycle C.

Let G ∗ C be the graph G after contracting C. Namely, the vertices
are V \ V(C) ∪ {C} and the edges are E \ {e ∈ E | |e ∩ C| ≥ 1} ∪
{{v, C} | ∃(v, x) ∈ E, x ∈ C, v /∈ C}.

We can find a matching in G−V(C) that has ν(G)− 1
2 (|V(C)| − 1)

edges8, so ν(G ∗ C) ≥ ν(G)− 1
2 (|V(C)| − 1). 8 Pick one vertex of C and a maximum

matching where it is exposed. Then,
removing all edges in the cycle yields
the desired matching.

Conversely, let M′ be a matching in G ∗ C, if C is exposed, then we
can define a matching M in G by adding 1

2 (|V(C)| − 1) alternating
edges of C to M′. If C is not exposed, we can still do that by taking
an edge in G corresponding to the edge matching C and the same
number of alternating edges of C that are not incident to that edge.9 9 Make a figure with this.

We conclude that ν(G ∗ C) = ν(G)− 1
2 (|V(C)| − 1).

lecture notes for comp 552 - fall 2018 9

Moreover, C cannot be in all maximum matchings of G ∗ C as we
have just proved the construction of the matching in G−V(C) (which
does not match C) is a maximum matching of G ∗ C. Thus, XG∗C is a
subset of V \ V(C). The final observation is that #odd (G− XG∗C) =

#odd (G ∗ C− XG∗C), but this holds because C has an odd number of
vertices, so the component containing C in G ∗ C− XG∗C will stay odd
in G − XG∗C and vice-versa. We conclude the other inequality from
the following.

|XG∗C|+ #odd (G− XG∗C) = |XG∗C|+ #odd (G ∗ C− XG∗C)

= def(G ∗ C)

= |V(G ∗ C)| − 2(ν(G ∗ C))

= |V(G)| − |V(C)|+ 1− 2ν(G) + |V(C)| − 1

= def(G)

We are ready to give an algorithm to find the max matching. The
main idea is that at we start with an empty matching and at each itera-
tion, we either increase the size of the matching or show that we have
found a maximum matching. Hence, we need a subroutine taking a
graph and matching as input and outputting a larger matching or a
proof that the matching is the largest. We need some helpful objects
for that.

Definition 34 (Alternating Tree). Let G be a graph and M a matching
in G. A tree rooted at an M-exposed node r is called M-alternating
if every vertex v at odd depth only has one child c such that {v, c}
is in the matching. We use the notation A(T) for the nodes at odd
depth and B(T) for the nodes at even depth. It is clear that |B(T)| =
|A(T)|+ 1. We say that T is maximal if we cannot add vertices and
edges to get a bigger alternating tree and if it does not contain an
M-augmenting path.

Lemma 35. Let G = (V, E) be a graph, M a matching and T a maximal M-
alternating tree. Suppose that all the edges with an endpoint in B(T) have
the other endpoint in A(T). Let G′ = G[V −V(T)] and M′ = M ∩ E(G′).
The graph G contains an M-augmenting path if and only if G′ contains an
M′-augmenting path.

Proof. (⇐) If G′ has an M′-augmenting path, then either it is also an
M-augmenting path in G, or at least one of its endpoints is matched
with a vertex in T. This vertex must be in A(T), but by definition of
an M-alternating tree, the vertices matched with A must belong to B.
We conclude that the latter case is not possible.

lecture notes for comp 552 - fall 2018 10

(⇒) If G has an M-augmenting path P, then either it is also an M′-
augmenting path or it contains edges in T. Note that there is only one
M-exposed vertex in T, so one endpoint of the path must be outside
T. Observe that adding the path P yields an alternating tree. Thus,
either case where P is a subset of T or not lead to a contradiction of
maximality of T.

Definition 36 (Blossom). Let G be a graph and M a matching in
G. If P is an M-alternating path of even length starting at an M-
exposed vertex and ending in vertex contained in an odd cycle C with
|E(C) ∩M| = 1

2 (|V(C)| − 1), then we say C is a blossom and that P is
its stem.

Lemma 37. Let G be a graph, M a matching and C a blossom. The graph G
contains an M-augmenting path if and only if G ∗ C contains one.10 10 Note that M is clearly a matching in

G ∗ C it matches C because M matched
one vertex of C with a vertex outside of
C.

Proof. (⇐)Suppose G ∗ C contains an augmenting path and it is not
an M-augmenting path in G. Then, the path must contain the blossom
and without loss of generality, it contains xCy, where xC is in M. We
extend this path to xa · · · by by adding one half of the cycle of C going
from a to b, where a is the vertex matched to x and by is the edge
corresponding to Cy in G ∗ C. The choice of which half is made in
order to keep an M-alternating path and it is clear that one half will
always yield that. This extended path is now an M-augmenting path
of G.

(⇒) Suppose G contains an augmenting path, then if we change the
matching to M′ by swapping the matched and unmatched edges on
the stem of C, we get a matching of same size as M. Thus, G also has
an M′-augmenting path. If this path does not go through C, then it is
an M′-augmenting path of G ∗ C. If it goes through C, then stopping
this path at C yields an M′-augmenting path in G ∗ C because C is
M′-exposed. Since |M| = |M′| we will also have an M-augmenting
path.

The conclusion of this discussion is the main theorem of this
section.

Theorem 38 (Blossom Algorithm). We can find the maximum matching
of a general graph in polynomial time.

MaxMatching(G = (V, E), M)

1 *****DO THIS*****

Lemma 39. Let G = (V, E) be a graph. For all S ⊆ V, there exists a
matching M such that no vertex of S is exposed if and only if there does not
exist a set X ⊆ V such that G − X has more than |X| odd components
contained in S. Furthermore, we can find such an X and M efficiently.

lecture notes for comp 552 - fall 2018 11

Proof. (⇒) If we find X such that G− X has more than |X| odd com-
ponents contained in S, then a matching hitting every vertex of S
would need to connect each components to X with at least one vertex
which is impossible.

(⇐) We construct a graph G′ from the original graph G. Add a
clique K|V| and add edges between every vertices of the clique and the
vertices of G − S. Since no matching hits all of S, there is no perfect
matching in G′. In particular, def(G′) > 0, thus we can find a set X′

such that #odd(G′ − X′) > |X′|. By a parity observation11, we get 11 For any graph G and X ⊆ V(G),
#odd(G− X) ≡ |X| (mod 2).#odd(G′ − X′) ≥ |X′|+ 2.

Obviously, X′ cannot contain all the vertices in the K|V| clique 12 12 Because there would not be enough
vertices left to get |X′|+ 2 componentsand hence, there is one component with every vertex of G − S− X′

and K|V| − X′ and all the other components are contained in S. In
total, we get at least |X′| + 1 odd components contained in S. By
letting X = X′ ∩ V, we get the desired set since |X| ≤ |X′| and there
will be at least as much components in G− X.

Lemma 40. When X is maximum. For each odd component U of G− X, for
all v ∈ U, G[U]− v has a perfect matching.

Proof. Suppose there is no perfect matching and there is no perfect
matching, then G− X **COMPLETE**

An introduction to polyhedral combinatorics

Characterizing closed convex sets

Definition 41 (Convex). A set S is convex if for every two points
x, y ∈ S, and for any 0 ≤ λ ≤ 1, λx + (1− λ)y ∈ S.13 13 It follows by induction that the convex

combination of any finite set of points
stays in S.Examples 42.

• In Rn, a hyperplane is the solution to some linear equation a1x1 +

· · · anxn = b. It also defines two open half-spaces and two closed
half-spaces when the equality is replaced by < and > or ≤ and ≥
respectively.

Suppose a half-space S is defined by {x ∈ Rn | ∑i aixi C b}14 and 14 The symbol C can be replaced by any
of the inequality signs.x, y ∈ S. If λ ∈ [0, 1], then

∑
i

ai(λxi + (1− λ)yi) = λ ∑
i

aixi + (1− λ)∑
i

aiyi

C λb + (1− λ)b = b.

Hence, we conclude that any half-space is convex.

• Let I be an index set and {Si}i∈I be a family of convex sets. If
x, y ∈ ∩ISi and λ ∈ [0, 1], then λx + (1− λ)y ∈ Si, ∀i ∈ I. Thus,

lecture notes for comp 552 - fall 2018 12

λx + (1 − λ)y ∈ ∩ISi and we conclude that the intersection of
convex sets is convex.

• Let Ax ≤ b define the feasible region of an LP. If x, y are in the
feasible region, then A(λx + (1 − λ)y) = λAx + (1 − λ)Ay ≤
λb + (1− λ)b = b. Thus, the feasible region is convex.

Definition 43 (Convex Hull). Let S be a finite set of points, the convex
hull of S is defined by

conv(S) =

{
n

∑
i=1

aidi |
n

∑
i=1

ai = 1, di ∈ S, n ∈N

}
.

Equivalently, and including the infinite case, conv(S) is the intersec-
tion of all convex subsets of the ambient space containing S and the
smallest convex set containing S.15 15 It follows that the convex hull of any

set is convex.
Lemma 44 (Separation lemma). If S is a closed convex set, then for any
z /∈ S, there exists a closed half-space containing S but not z.

Proof. The case of S = ∅ is trivial. Since S is non-empty and closed, it
has a point y ∈ S that minimizes the distance to z.16 Let c = z− y 6= 0 16 Requires an analysis argument, but

this is not the focus here.and δ = 1
2 (‖z‖2 − ‖y‖2), we claim that cTz < δ is a half-space that

separates z from S.
First we confirm that z is not in the half-space:

cTz = (z− y)Tz

> (z− y)Tz− 1
2
(‖z− y‖2)

= zTz− yTz− 1
2
(zTz− 2yTz + yTy)

=
1
2
(zTz− yTy)

= δ

One can also check that cTy < δ with the same method.17 Next, 17

cTy = (z− y)Ty

< (z− y)Ty +
1
2
(‖z− y‖2)

= zTy− yTy +
1
2
(zTz− 2yTz + yTy)

=
1
2
(zTz− yTy)

= δ

suppose toward a contradiction that x ∈ S and cTx ≥ δ, then, we get
cT(x− y) > 0. Hence, there exists λ ∈ (0, 1] such that

λ <
2cT(x− y)
‖x− y‖2 .

Let w = λx + (1− λ)y, since S is convex, w ∈ S. However, we find

lecture notes for comp 552 - fall 2018 13

that

‖w− z‖2 = ‖λx + (1− λ)y− z‖2

= ‖λ(x− y) + (y− z)‖2

= ‖λ(x− y)− c‖2

= λ2‖x− y‖2 − 2λcT(x− y) + ‖c‖2

< 2λcT(x− y)− 2λcT(x− y) + ‖c‖2

= ‖c‖2

which contradicts the fact that y is the point in S closest to z. We
conclude S is contained in the half-space.

Corollary 45. A closed set is convex if and only if it is the intersection of a
set of half-spaces.

Proof. (⇐) We know that half-spaces are convex, so the intersection of
a set of half-spaces is convex.

(⇒) Let S be convex, then for any point not in S, we can use the
separation lemma to get a half-space containing S and not that point.
The intersection of these half-spaces for every non-member of S can
only contain S, so it is equal to S.

Characterizing bounded polyhedra

Definition 46 (Polyhedron). A polyhedron is the intersection of a
finite set of closed half-spaces.18 We often define a polyhedron with a 18 It is therefore a closed convex set.

matrix A ∈ Rm×n and a vector b ∈ Rm, letting

P = {x ∈ Rn | Ax ≤ b}.

Definition 47 (Polytope). A polytope is the convex hull of a finite set
of points.

Definition 48 (Vertex). A point in a convex set S is a vertex of S if it is
not the convex combination of points in S \ {v}.

Let P be a polyhedron defined by Ax ≤ b and z ∈ P, we will
denote Az and bz to be the submatrices consisting of the rows that are
satisfied with equality in Az ≤ b. In other words, we have Azz = bz.

Lemma 49. A point z in a polyhedron given by Ax ≤ b is a vertex if and
only if there is no c 6= 0 such that Azc = 0.

Proof. (⇒) We prove the contrapositive. Suppose that there exists a
c 6= 0 such that Azc = 0. Since for all rows Ai not in Az, Aiz 6= bi,
we must have Aiz < bi. Thus, we can find some δ > 0 such that
Ai(z± δc) < bi for all Ai’s not in Az. For the rows of Az, we still get

lecture notes for comp 552 - fall 2018 14

Az(z± δc) = bz, so in total, we get two new points z + δc and z− δc
in the polyhedron. Moreover, we can write z = 1

2 (z + δc) + 1
2 (z− δc)

implying z is not a vertex.
(⇐) We prove the contrapositive. Suppose that z is not a vertex,

then it is the convex combination of two points and without loss
of generality19, we can write z = x+y

2 for x, y ∈ S. Observe that 19 Let S be convex set and z = λx +
(1− λ)y for λ ∈ [0, 1] and x, y ∈ S.
If λ 6= 1

2 , we can assume λ < 1
2 (or

swap the roles of x and y), so w =
x + 2λ(y− x) = (1− 2λ)x + 2λy is in S.
Then, 1

2 x + 1
2 w = z.

Az(x − z), Az(y− z) ≤ 0 as Azx, Azy ≤ bz and Azz = bz. However,
y− z = −(x− z), so Az(y− z) = 0.

Lemma 50. Polyhedron have finitely many vertices.

Proof. For each submatrix of AI , there is at most one point z of the
polytope such that Az = AI , since otherwise, we would have Az1(z1 −
z2) = 0 implying z1 is not a vertex. Since there are finitely many
submatrices, there can only be finitely many vertices.

Theorem 51. Every bounded polyhedron is a polytope.

Proof. We claim that a bounded polyhedron P is the convex hull of
its vertices X = {x1, . . . , xn}. Pick z ∈ P \ X such that the number
of rows in Az is maximal, we can find a vector c such that Azc = 0
because z is not a vertex. Since P is closed and bounded, we can
find maximal λ1, λ2 > 0 such that z + λ1c and z − λ2c are in P.
Both points satisfy at least one more inequality tightly 20, so they 20 Show this***

are convex combinations of the vertices by maximality of #rows(Az).
Since z is convex combination of these points, we conclude that z ∈
conv(X).

Theorem 52. Every polytope P is a bounded polyhedron.

Proof. We show this by induction on the dimension of the space d. If
the polytope is contained in an affine plane, then the result follows by
the induction hypothesis. Otherwise, without loss of generality21, we 21 By translating P.

can find some r > 0 such that B(0, r) is contained in P.
Now, define

P∗ = {y ∈ Rd | xTy ≤ 1, ∀x ∈ P}.

Note that because each x is a convex combination of the vertices
x1, . . . , xn of P, we can also write

P∗ = {y ∈ Rd | xT
i y ≤ 1, 1 ≤ i ≤ n}.

We claim that P∗ is bounded. Indeed, for any y ∈ P∗, let x = r y
‖y‖ , this

point is in B(0, r), so it is in P. We get that

xTy ≤ 1 =⇒ r‖y‖ ≤ 1 =⇒ ‖y‖ ≤ 1
r

.

lecture notes for comp 552 - fall 2018 15

This means P∗ is a bounded polyhedron and by theorem 51, it is a
polytope and we have P∗ = conv(y1, . . . , ym), where the yj’s are the
vertices of P∗. Now, we claim that

P = {x ∈ Rd | yT
j x ≤ 1, 1 ≤ j ≤ m}.

The ⊆ inclusion is clear because yT
j xi = xT

i yj ≤ 1 for any vertex xi

(thus also for any convex combination of the vertices). For ⊇, suppose
that x is in the R.H.S. but not in P. By the separation lemma, we can
find a hyperplane that separates x from P. In mathematical terms, we
can find c ∈ Rd and δ ≥ 0 such that cTx ≥ δ and cTx′ < δ for all
x′ ∈ P. Since 0 is an element of P, we cannot have δ = 0, then we can
rescale c to have δ = 1.

In conclusion, we obtain that cTx′ < 1 for all x′ ∈ P, which means
c ∈ P∗. Thus, we can write c = ∑m

j=1 λjyj, with ∑j λj = 1. However,
this leads to the following contradiction:

1 < cTx =
m

∑
j=1

λjyT
j x ≤

m

∑
j=1

λj = 1.

This means that P is a polyhedron and since it is clearly bounded22, 22 It is the convex hull of a finite set of
verticeswe have shown the theorem.

Characterizing unbounded polyhedra

Lemma 53. Let P be a polyhedron given by Ax ≤ b and X be the vertices of
P. If there is no non-zero z such that Az = 0, then

P = conv(X) + {y | Ay ≤ 0}.

Proof. (⊇) If x ∈ conv(X), then Ax ≤ b. Thus, if Ay ≤ 0, then
A(x + y) ≤ b and x + y ∈ P.

(⊆) Let w ∈ P, we induct on n− #rows(Aw).23 If w satisfies all the 23 Recall that Aw is the set of rows that
w satisfies with equality in Aw ≤ b.rows with equality, then since no z 6= 0 yields Awz = 0, w is a vertex

24 and, we have w = w + 0 which is in the R.H.S. 24 By lemma 49.

Suppose that Aw does not satisfy all the rows, we can assume that
there exists z 6= 0 such that Awz = 0, otherwise, we get a vertex again.
Replacing z by −z if necessary, we get at least one row Ai of A (not
in Aw) that yields Aiz > 0. For such a row, there is a unique ci > 0
such that Ai(w + ciz) = bi. If we let c = min ci

25, wet get that w + cz 25 The minimum is taken over all rows
Ai with Aiz > 0.satisfies one more row with equality and all the other rows are still

satisfied. By our induction hypothesis, w + cz is in the R.H.S, so we
can write w + cz = x + y where x ∈ conv(X) and Ay ≤ 0.

If A(−z) ≤ 0, then A(y − cz) ≤ 0 and w = x + (y − cz) shows
that w in the R.H.S. On the other hand, if A(−z) > 0, then we can
construct d similarly to c but for −z, to get w− dz ∈ P that satisfies

lecture notes for comp 552 - fall 2018 16

one more row. By induction, it is in the R.H.S. and w is a convex
combination of w + cz and w − dz both in the R.H.S., which clearly
leads to w being in the R.H.S.

Lemma 54. Let P be a polyhedron given by Ax ≤ b and X be the vertices of
P. If there exists a non-zero z such that Az = 0, then

P = {x ∈ Rd | Ax ≤ b, zTx = d}+ {λz | λ ∈ R}.

Proof. (⊆) Let x ∈ P, we know that Ax ≤ b, so if zTx = d, we are done.
Suppose that zTx = d+ c for some c ∈ R. Let λ = c

‖z‖2 and y = x− λz,

we have Ay ≤ b and zTy = d.26 Then, we can write x = x− λz + λz 26

Ay = Ax− Aλz = Ax ≤ b

zTy = zT(x− λz) = d + c− λ‖c‖2 = d

which is in the R.H.S.
(⊇) Let x be in the R.H.S., then write x = y + λz with Ay ≤ b and

zTy = d. We have Ax = A(y + λz) = Ax ≤ b, so x ∈ P.

Theorem 55. A polyhedron is the sum of two convex sets.

Proof. Follows trivially from the two previous lemmas.

Definition 56 (Cone). A set S is a cone if for any z and y in S and
λ, µ ≥ 0, λz + µy is in S. For a finite set X, the set cone(X) =

{∑x∈X λxx | ∀λx ≥ 0} is a cone.27 A cone is finitely generated if 27 It is the smallest cone containing X.

it is cone(X) for some finite set X.

Proposition 57. A cone is convex.

Proof. It follows trivially from the definition as convex combinations
are of the form λz + µy for λ, µ > 0.

Proposition 58. For all matrices A, {y ∈ Rd | Ay ≤ 0} is a finitely
generated cone.

Proof. We proceed by induction on d− rank(A), the result is trivial
when A is full rank as {Ay ≤ 0} is generated by {−Ai | Ai is a row of A}.2828 Indeed, if we let the rows Ai be the

basis of our space, −A becomes the −Id
and −Ay ≤ 0 implies all the coordinates
of y in this basis are positive.

If there exists z 6= 0 such that Az = 0, then using the same method as
in lemma 54, we get that our cone is the sum of {y | Ay ≤ 0, zTy = 0}
and {λz | λ ∈ R}.

The first term in the sum can be rewritten as

{y | Ay ≤ 0, zTy ≤ 0,−zTy ≤ 0} = {y | A′y ≤ 0},

where A′ has a higher rank than A.29 By our induction hypothesis, it 29 Because z was orthogonal to all other
rows in A.is finitely generated by a set X. If we add z and −z it is clear that we

can generate A, showing that it is finitely generated.
Suppose there is no non-zero z such that Az = 0. We will show by

induction on t that for any 0 ≤ t ≤ #rows(A), there is a finite set St

contained in the cone that generates every point in the cone satisfying

lecture notes for comp 552 - fall 2018 17

exactly #rows(A)− t rows of A with equality. If t = 0, since Az = 0
for no non-zero z, the set S0 = {0} works.

When t > 0, let B be a submatrix of A with #rows(A)− t rows. If
some point in the cone satisfies the rows of B with equality, call it wB.
We know that wB does not satisfy all rows of A with equality, so one
row of Ab is such that (A − B)i(−wB) > 0. Then, for any w in the
cone satisfying the rows of B with equality, we can find cw,i such that
(A− B)i(w− ciwB) = 0 and let cw be the minimum (running over i) of
the cw,i’s. Then, w− cwwB satisfies one more row with equality, so it is
generated by St−1 by our induction hypothesis. It follows that

St = St−1 ∪ {wB | B has #rows(A)− t rows}

generates every point in the cone that satisfy #rows(A)− t rows with
equality.

Theorem 59. Every polyhedra is the sum of a polytope and a finitely gener-
ated cone.

Proof. 30 30 Do it with course notes by Schrijver.

Optimizing over the matching polytope

Definition 60 (Incidence vector of matching). Let G be a graph with
E = {e1, . . . , em} be the set of edges and M ⊆ E be a matching. The
incidence vector of M is χM31 where 31 We sometimes subscript this vector

with an edge e ∈ M instead of a
number.

χM
i =

1 ei ∈ M

0 o/w
.

Definition 61 (Matching Polytope). The matching polytope of a graph
G is the convex hull of the incidence vectors of all matchings of G.32 32 We denote it MP(G).

Proposition 62. Let c ∈ Rd, b ∈ d and D ⊆ Rd be finite. If all v ∈ D
satisfy cTv ≤ b, so do all x ∈ conv(D).

Proof. Let x ∈ D, we know there exists λi such that ∑i λivi = x for
vi ∈ D and ∑i λi = 1. Thus, we get

cTx = ∑
i

λicTvi ≤∑
i

λib = b.

Proposition 63. For any graph G,33 33 The notation ∂(v) means all edges
incident to v. For a subset X ⊆ V(G),
∂(X) means the edges that cross the
boundary of X, in other words, edges
with exactly one endpoint in X.

MP(G) ⊆ {x ∈ Rd | x ≥ 0} ∩ {x ∈ Rd | ∀v ∈ V, ∑
e∈∂(v)

xe ≤ 1}.

lecture notes for comp 552 - fall 2018 18

Proof. It is clear that for every matching M, χM ≥ 0, so by the last
proposition, it holds for any point in MP(G). Moreover, for each
matching M, ∑e∈∂(v) χM

e ≤ 1 as the M cannot match the same vertex
twice, thus this inequality also holds for all points in MP(G).

However, this is not the full characterization of MP(G) as the
following proposition shows.

Proposition 64. For all odd cycles C of G (of size 2k+ 1), let x be the vector
such that xe =

1
2 when e ∈ E(C) and xe = 0 otherwise. x /∈ MP(G).34 34 Note that x is in the R.H.S. of equality

in proposition 63 but not in MP(G).
Proof. For any matching M, for any odd cycle C, M must miss at least
one vertex. Thus, if you sum up the χM

e for each edge e in the cycle,
you will always be less than |V(C)|/2. Thus, any convex combinations
of the matchings cannot achieve that but x does, so x /∈ MP(G).

Note that this can be generalized to any set of odd size, and Ed-
monds’ theorem shows this was precisely what was missing from the
characterization of the matching polytope.

Theorem 65 (Edmonds). x is a convex combination of incidence vectors of
matchings of G if and only if it satisfies the following:

1. For all e ∈ E(G), xe ≥ 0.

2. For all v ∈ V(G), ∑e∈∂(v) xe ≤ 1.

3. For all S ⊆ V(G) with |S| odd, ∑e∈E(S) xe ≤ |S|−1
2 .

We first show the version for the perfect matching polytope.

Definition 66. The perfect matching polytope of a graph G is the
convex hull of incidence vectors of perfect matchings of G.35 35 We denote it PMP(G).

Theorem 67. A point x is in PMP(G) if and only if it satisfies the follow-
ing36: 36 Observe that we have to make the

second condition a bit tighter because
every vertex must be covered by a
perfect matching.

1. For all e ∈ E, xe ≥ 0.

2. For all v ∈ V, ∑e∈∂(v) xe = 1.

3. For all S ⊆ V with |S| odd, ∑e∈E(S) xe ≤ |S|−1
2 .

Proof. Let Q(G) be the polytope defined by the conditions above,
we want to show that Q(G) = PMP(G). The ⊇ inclusion is trivial
because the vertices of PMP(G) all satisfy these conditions. For ⊆,
assume it is not true, then let G be the graph with |V|+ |E| minimal
such that Q(G) 6⊆ PMP(G). Clearly, |V| is even or both polytopes
would be empty37 and G has at least one vertex and one edge. 37 There are no perfect matchings,

so PMP(G) is the convex hull of an
empty set. If y ∈ Q(G), then by 3,

∑e∈E ye ≤ |V|−1
2 , but

2 · ∑
e∈E

ye = ∑
v∈V

∑
e∈∂(v)

ye

= ∑
v∈V

1

= |V|

which is a contradiction, so Q(G) = ∅.

We first note that if x ∈ Q(G) \ PMP(G) with xe = 0 for some
e ∈ E, then x ∈ Q(G − e) because we just remove a 0 in the sums

lecture notes for comp 552 - fall 2018 19

of 2 and 3, but we still cannot have x ∈ PMP(G − e) because any
convex combination of perfect matchings not using e is in PMP(G).
We obtain a smaller counter example. If xe = 1, then we remove this
edge and its endpoints to get G′. To check x ∈ Q(G′), we only need
to verify 3, which is true because odd sets in G′ are odd sets in G and
we only removed terms from the sum. We cannot have x ∈ PMP(G′)
because we could just extend the matchings in the combination by
adding e and we would get x ∈ PMP(G). Again, this yields a smaller
example. We conclude that for any x ∈ Q(G) \ PMP(G) and e ∈ E, we
must have 0 < xe < 1.

However, we have that ∑e∈∂(v) xe = 1 for any v, so v must have
degree at least 2. We get |E| ≥ |V|. If it is an equality, then every
vertex has degree 2, G is a collection of cycles and the theorem follows
either because G has no odd cycle and is bipartite38 or because there 38 Explain why bipartite case is easy.

is an odd cycle and Q(G) = PMP(G) = ∅. The case |E| > |V|
remains.

Now if Q(G) 6⊆ PMP(G), we can find a vertex x ∈ Q(G) that is
not in PMP(G). This vertex lives in space of dimension |E|, so it must
satisfy |E| equations tightly. Since it cannot satisfy any equation in 1

and there is not enough equations to satisfy in 2, there exists some
odd set S with ∑e∈E(S) =

|S|−1
2 . Let G′ = G ∗ S and G′′ = G ∗ (G− S)

be the contractions of the respective sets where we keep parallel edges.
Call the contracted vertices s′ and s′′ respectively. We induce two
vectors x′ and x′′ for G′ and G′′ from x by removing the irrelevant
edges. We claim that x′ ∈ Q(G′) and x′′ ∈ Q(G′′).

For x′, 1 is trivially satisfied. For 2, we only need to check for s′

which satisfies the equality because of how we chose S. For 3, note
that any odd set not containing s′ is in G, so we only need to check
for those containing s′. Then, if we replace s′ by the elements of S,
we get an odd set of G which satisfies the inequality and because the
edges in its boundary are the same than those on the boundary of the
original set, the latter also satisfies the inequality.

For x′′, the argument is very similar.
Since G′ and G′′ are smaller than G, we get that x′ and x′′ are in the

respective perfect matching polytopes. Since x is a vertex of Q(G), it
has rational entries and so does x′ and x′′. Thus, for some k ∈ N, we
can write

x′ =
1
k

k

∑
i=1

χM′i x′′ =
1
k

k

∑
i=1

χM′′i ,

where M′i and M′′i are perfect matchings in G′ and G′′.
For each e ∈ ∂(S), we must have kx′e matchings M′i that contain

e and kx′′e matchings in M′′i that contain e and kxe = kx′e = kx′′e .
However, the M′i ’s and M′′i ’s can only contain one e ∈ ∂(S), thus,
by rearranging the terms, we can make sure that M′i and M′′i share

lecture notes for comp 552 - fall 2018 20

exactly one e ∈ ∂(S).
Set Mi = M′i ∪M′′i , it matches all the vertices in S and G − S and

has no repeated match because only one e ∈ ∂(S) is in Mi. Hence, it is
a perfect matching of G and it is clear to see that

x =
1
k

k

∑
i=1

χMi .

This implies x ∈ PMP(G) and we have a contradiction.

Proof for MP(G). Denote R(G) to be the polyhedron defined by
Edmond’s characterization, we want to show that R(G) ⊆ MP(G). We
will use the result for PMP(G) to make this proof simpler.

Denote G̃ to be a new graph with two copies of G where each
vertex is adjacent to its copy.39 39 Formally, we have G′ = (V′, E′) a copy

of G and G̃ = (Ṽ, Ẽ) with

Ṽ = V ∪V′ and Ẽ = E ∪ E′
⋃

v∈V
{v, v′}.

Let x ∈ R(G), we denote x̃ to be the vector with x̃e = x̃e′ = xe and
x{v,v′} = 1−∑e∈∂(v) xe. Note that if x̃ ∈ PMP(G̃), then we can restrict
to edges of G to obtain a convex combination of matchings of G that
yield x. In other words, if we can show that x̃ ∈ PMP(G̃), then we
will have that x ∈ MP(G) and the proof will be done.

We will show that x̃ ∈ Q(G̃) = PMP(G̃). It is clear that all inequali-
ties of type 1 are satisfied. The inequalities of type 2 follow from our
construction of x̃. Hence, we only have to verify the inequalities of
type 3.

Let Ũ be a set of odd size and decompose it as Ũ = X ∪ Y′ where
X ⊆ V and Y′ ⊆ Y′. Also denote X′ to be the copy of X in V′ and Y
to be the copy of Y′ in V. Since |Ũ| is odd, we must have that either
|X \ Y| or |Y \ X| is odd.40 Without loss of generality, it is the former 40 |Ũ| = |X|+ |Y| = |X \ Y|+ |Y \ X|+

2|X ∩Y|and because x ∈ R(G), we have

∑
e∈E[X\Y]

xe ≤
|X \Y| − 1

2
.

This yields the bound41 41 For the first inequality, note that when
adding up the edges going out of each
vertex of X \ Y, we are counting twice
the edges go to another vertex of X \Y.∑

e∈∂(X\Y)
x̃e = ∑

v∈X\Y

 ∑
e∈∂(v)

x̃e

− 2

 ∑
e∈E[X\Y]

x̃e


≥ |X \Y| − 2

|X \Y| − 1
2

= 1

However, we also have

∑
e∈∂(Ũ)

x̃e ≥ ∑
e∈∂(X\Y)

x̃e ≥ 1

lecture notes for comp 552 - fall 2018 21

because although the L.H.S. misses the edges that go from X \ Y to
X ∩Y, it gets enough back from the same edges going from X′ ∩Y′ to
X′ \Y′. Note that this is equivalent to

∑
e∈E[Ũ]

x̃e ≤
|Ũ| − 1

2
,

since each vertex v satisfies the inequality of type 2. We conclude that
x̃ ∈ PMP(G).

	Course Introduction
	Maximum Matchings
	An introduction to polyhedral combinatorics
	Optimizing over the matching polytope

