
Assignment - Brzozowski’s Algorithm
Ralph Sarkis

November 16, 2020

Abstract

The main goal of this assignment is to prove the correctness of Brzozowski’s
algorithm to minimize a DFA. After recalling some notions in automata theory in
Section 1, we will introduce (co)algebras and (co)induction in Section 2 and then use
this new language to describe Brzozowski’s algorithm and its proof of correctness in
Section 3. Note that not all results in Section 2 are needed for Section 3 and Section
2 is interesting on its own without any knowledge of automata theory. We strongly
encourage you to collaborate and talk to us if you have difficulties, but we ask that
you write your own solution.

1 Preliminaries on Automata

There are no questions in this section, only stuff we believe you learned in a first course
in theoretical CS. Give it a quick read in order to at least to identify my notation, the
most important part is the definition of Brzozowski’s algorithm in Section 1.3.

1.1 Deterministic Finite Automata

Definition 1 (DFA). A deterministic finite automaton (DFA) M is composed of a finite
alphabet Σ (a set of symbols), a finite set of states Q with a starting state identified by q0,
a transition function δ : Q× Σ→ Q and a subset F ⊆ Q of accepting states.

An input for M is a finite word (concatenation of finitely many elements) of Σ, we
will denote it w ∈ Σ∗. The automaton reads its input letter by letter, starting in state q0,
and changes its state according to δ: δ(q, a) = q′ means that if M is in state q and reads
the symbol a, then M ends up in state q′. After reading all of its input M is in some state
q and outputs “Accept” if q ∈ F and “Reject” otherwise.

The global behavior of M is described by the subset L ⊆ Σ∗ of words that M accepts.
We denote this subset L(M) and say that L(M) is the language recognized by M.

We will denote δ∗ the extension of δ to Σ∗, it is defined inductively by

δ∗(x, ε) = x and δ∗(x, a · w) = δ∗(δ(x, a), w).

Examples 2. Typically, it is more readable to describe DFAs by drawing a graphical
representation than by defining each component.

1. Consider the DFA described by Σ = {a}, Q = {q0, q1}, δ = (q0, a) 7→ q1, (q1, a) 7→
q0, F = {q0}. It is represented by the following diagram.

1

q0 q1

a

a

The circles represent the states and accepting states are denoted with a second inner
circle. The arrows represent transitions and the labels are the symbols that need to
be read for this transition to occur. The smaller arrow with no label designates the
starting state.

It is easy to see that the language recognized by this DFA consists of all the words
with an even number of a’s (i.e.: L(M) = {a2n : n ∈N}).

2. The DFA recognizing the language {anbm | n, m ∈N} can be described as follows.

1 2

3

b

b

a,b

a

a

3. For any DFA M on an alphabet Σ, it is very easy to describe a DFA M′ that recog-
nizes the complement of L(M), i.e.: such that L(M′) = Σ∗ \ L(M). We just invert
the roles of accepting and non-accepting states. Here is the DFA recognizing the
complement of {anbm | n, m ∈N}.

1 2

3

b

b

a,b

a

a

Remark 3. The term deterministic means that the transitions are completely determined
by the input, that is, you can run the DFA on the same input many many times and it will
always end in the same state and output the same thing. Mathematically, determinism
comes from the fact that δ(q, a) takes the value of only one state for any q ∈ Q and a ∈ Σ.
If we allow δ to be nondeterministic, we get the definition of an NFA.

2

1.2 Nondeterminisitic Finite Automata

Definition 4. An nondeterministic automaton (NFA) M consists of a finite alphabet
Σ, a finite set of states Q with a starting state identified by q0, a transition function
δ : Q× (Σ ∪ {ε})→ P(Q) and a subset F ⊆ Q of accepting states.

There are two main differences with a DFA. First, an NFA can sometimes make a
transition without reading a symbol from the input but rather by reading ε (denoting an
empty string). Second, the image of δ is a set of possible states for the transition to end
in. Let us see how this affects the behavior of M.

The automaton still reads its input letter by letter starting in state q0, but now instead
of making the only possible transition, it makes all of them at the same time and con-
tinues the computation on multiple branches. The output of M is “Accept” if in at least
one branch, all the input was read and M is in an accepting state, otherwise M outputs
“Reject”. The language recognized by M is defined as for DFAs.

Another way to view nondeterminism is to consider that M has access to an all-
knowing oracle that will choose which transition to make (out of the possible ones).
This oracle always make the choices that lead to accepting the input if possible, hence,
M accepts w ∈ Σ∗ if and only if there is a sequence of choices that lead to an accepting
state after reading all the input.

Examples 5. The representation of NFAs is really similar to that of DFAs but now, ar-
rows can be labeled with an ε, multiple arrows coming out of the same state can have
the same label, and states can have no arrows coming out with a specific label a ∈ Σ
(corresponding to the fact that δ(q, a) = ∅).

1. The NFA recognizing {anbm | n, m ∈N} is simpler than the DFA we drew above.

q0 q1
b

a b

2. For any DFA M, we can easily construct an NFA M′ that recognizes the reverse
of L(M), i.e.: L(M′) = {wR | w ∈ L(M)}, where R denotes the reverse of a word.
Indeed, from the representation of a DFA, we can reverse all arrows, make the
initial state an accepting state and add a pseudo initial state with ε–transitions to
all the old accepting states as shown by the illustration below.

The reverse of {anbm | n, m ∈N} is {bnam | n, m ∈N} and it is recognized by the
following NFA.

3

1 2

30

a b

a, b

a

b

ε
ε

3. Finding the complement of an NFA is not as easy as for DFAs. For instance, con-
sider the following NFA on the alphabet {a, b}.

1 2ε

a,ba,b

It recognizes all words generated by the alphabet, but if you swap the accepting
and non-accepting states, the new NFA will also accept all words.

Remark 6. Since an NFA can have ε–transitions, the extension of δ to Σ∗ is defined differ-
ently, δ∗(x, ε) is the ε–closure of x and δ∗(x, w) is defined inductively. More formally,

δ∗(x, ε) = {q ∈ Q : ∃{x = x0, x2, . . . , xn = q}, ∀1 ≤ i ≤ n, xi ∈ δ(xi−1, ε)}
δ∗(x, a · w) =

⋃
q∈δ(x,a)

⋃
q′∈δ∗(q,w)

δ∗(q′, ε).

Intuitively, δ∗(x, w) is the set of words that x can reach while reading the input w, taking
into account that the machine can take any ε–transition.

One question that quickly arises is whether there are languages that can be recog-
nized by an NFA, but not by any DFA. The converse is clearly false because any DFA can
be written as an NFA where the image of the transition function only contains singletons,
i.e.: there is only one possible state for each transition.

Surprisingly, the original question also has a negative answer. In other words, any
NFA has a DFA recognizing the same language. To prove this, we describe the powerset
construction transforming an NFA into an equivalent DFA.

Proof sketch. Let M = (Σ, Q, q0, δ, F) be an NFA, we construct an equivalent DFA M′ =
(Σ, Q′, q′0, δ′, F′) as follows.

• The states of M′ are sets of states of M, that is Q′ = P(Q).

4

• The initial state q′0 is the set of states that can be reached by reading no symbol
when running M. Formally, we have

q′0 = δ∗(q0, ε).

• The transition function will simulate all the possible choices by transitioning be-
tween sets of states. For any S ⊆ Q and a ∈ Σ,

δ′(S, a) =
⋃
q∈S

δ∗(q, a)

• A set of states is accepting if and only if it contains an accepting state.

It is left to show that L(M) = L(M′).

The transformation we just described implies that NFAs are not necessary and we
could always work with DFAs. However, observe that the size of the automaton in-
creases exponentially in this procedure, so it is not practical to work with the resulting
DFA. Consequently, one could ask whether we could further transform the DFA into
a smaller (maybe smallest) but equivalent DFA. This is called DFA minimization and
there are several polynomial time algorithms that solve this problem (Hopcroft’s and
Moore’s). Another algorithm by Brzozowski is conceptually much simpler although it
runs in exponential time in the worst case.

1.3 Brzozowski’s Algorithm

Definition 7. Let M be a DFA, Brzozowski’s algorithm is the following procedure.

1. Reverse M to obtain an NFA MR which recognizes the reverse of L(M).

2. Use the powerset construction to obtain a DFA D(MR), still recognizing the re-
verse of L(M).

3. Discard all unreachable states of D(MR), denote the automaton obtained with N.

4. Apply the same procedure (steps 1 to 3) to N, i.e.: reverse N, determinize the result
and discard unreachable states to obtain O.

Proposition 8. The final automata O is the automaton with the least number of states satisfying
L(O) = L(M). Another way to say this: if rev denotes the reversing operation, det denotes the
determinization and reach denotes the operation of removing unreachable states, then

reach(det(rev(reach(det(rev(M))))))

is the minimal automaton equivalent to M.

Remark 9. This result should be very surprising. Brzozowski’s algorithm simply reverses
the automaton twice to obtain a minimal form. Moreover, during the procedure, there
are two steps inducing an exponential blow-up of the number of states. Indeed, deter-
minization via the powerset construction leads to an automaton with 2|Q| states. That

5

means that in the worst cases, det(rev(reach(det(rev(M))))) could have 22|Q| states. This
is the reason why Brzozowski’s algorithm can take exponential time. Nonetheless, in
the end, you still end up with a minimal automaton. Another surprising thing, this
algorithm often performs better than the worst case scenario.

This algorithm was first proven correct using complex combinatorial arguments in
1963, but in this assignment, we will give a much simpler proof using coalgebras. The
next section is dedicated to introducing coalgebras and coinduction via their duals,
algebras and induction.

2 (Co)algebras and (Co)induction

In this section, we will introduce (co)algebras and (co)induction and ask you to fill
out some gaps. While the definitions are given for an arbitrary category C, all of the
examples and exercises will be done on Set.

2.1 Algebras

The term algebra has a few different meanings and here we will more precisely consider
F–algebras for some endofuntor F : C C. Nevertheless, all the objects that are referred
to as algebras have a common motto: algebras only care about structure.

For instance, in a first year algebra course, groups are studied up to isomorphisms
(maps that preserve the structure) because all the useful properties of a group are de-
termined completely by how the operation acts on the underlying set. As a concrete
example, the groups Z2×Z3 and Z6 are the same group even if their elements have dif-
ferent names. It is a similar situation for rings, vector spaces and a lot more mathematical
objects.

Before giving the general definition of an F–algebra, we categorify the definition of
a group.

Example 10. Usually, a group is defined as a set G along with an operation · : G×G → G
satisfying some conditions, namely, associativity, existence of an identity and existence
of an inverse for each element. It is then a formal consequence that the identity and
inverses are unique.

Therefore, it is equivalent to define a group as a set G with a binary operation ·,
an identity 1 ∈ G and an inverse g−1 for all g ∈ G that satisfy some properties. In
order to abide to the categorical mindset, it is better to view the identity as a morphism
1 : 1→ G (1 is the final object, i.e.: a singleton) and describe inverses with a morphism
(−)−1 : G → G. A few additional diagrams have to commute for G to satisfy all axioms
of a group, but we leave their construction as an exercise. We conclude that a group can
be seen as a morphism

[1, (−)−1, ·] : 1 + G + (G× G)→ G.

This is our first example of an F–algebra, here F : Set Set sends a set G to 1 + G +
(G× G) and a morphism f to [id1, f , (f , f)].

6

Note that since we have not used the fact that G is a set, this definition gives rise
to groups in other categories than Set provided they have a final object, products and
coproducts.

Exercise 1 (1pt). Draw the additional diagrams that G, ·, 1 and (−)−1 should satisfy to
obtain a group.

Definition 11 (F–algebra). Let F : C C be a functor, an F–algebra is an object A ∈ C0
along with a morphism α : F(A)→ A ∈ C1 called the structure map.

Examples 12.

1. Since a monoid M only has a binary operation and an identity, it can be represented
as an algebra [1, ·] : 1 + (M×M)→ M. Similarly, one can construct algebras that
represent rings and vector spaces, but not fields (why?).

2. We will see later that the induction principle we know comes from the algebra
[0, succ] : 1 + N→N, where 0(∗) = 0 and succ(n) = n + 1.

3. Although we will not use them often, there are algebras in different categories
than Set. In computer science, we often use induction to reason about lists, we
will see that this is because lists are algebras. More precisely, for a type A, the
type A∗ of lists with elements of type A is has an algebra structure [nil, cons] :
1 + (A× A∗) → A∗ given by nil(∗) = ε ∈ A∗ (the empty list) and cons(a, w) =
w · a ∈ A∗ (concatenation). The category in which this algebra lives depends on
the programming language and types considered.

Remark 13. The components of the structure map (i.e.: 0 and succ in the second example)
are often called the constructors because they define rules to construct elements of the
algebra using other elements as building blocks.

As you might expect F–algebras form a category, denoted Alg(F), with the following
notion of morphism.

Definition 14 (F–algebra homomorphism). Let F : C C be a functor and α : F(A)→
A and β : F(B) → B be F–algebras. An F–algebra homomorphism from the former to
the latter is a morphism f : A→ B that makes this square commute.

F(A) F(B)

A B

α

F(f)

β

f

(1)

This definition also clarifies why we require F to be a functor.

Example 15. Let F = X 7→ 1 + X + (X × X) be the functor discussed Example 10. An
F–algebra homomorphism is represented by the following square.

1 + G + (G× G) 1 + H + (H × H)

G H

[1G ,(−)−1,·]

[id1 , f ,(f , f)]

[1H ,(−)−1,·]

f

(2)

7

Unwrapped, this says that f (1G) = 1H , f (g−1) = f (g)−1 and f (g · g′) = f (g) · f (g′) for
all g, g′ ∈ G, i.e.: if both algebras represent groups as seen in Example 10, it is a group
homomorphism.

2.2 Coalgebras

Now that we have a categorical notion of algebra, we can look at its dual.

Definition 16 (F–coalgebra). Let F : C C be a functor, an F–coalgebra is an object
A ∈ C0 called the carrier along with a morphism ω : A → F(A) called the behavior
map. We will refer to a coalgebra with A, ω or the pair (A, ω).

Examples 17. 1. If F is the identity on Set, then an F–coalgebra is just an endomor-
phism ω : A → A and it is sometimes called a dynamical system. You can think
of the elements of A as states and ω as the transition map for the system.

2. Let StrN : Set Set = N× (−) be the functor sending a set X to N× X and
a function f : X → Y to idN × X : N× X → N× Y. An example of a StrN–
coalgebra is the set NN of all infinite sequences (also called streams) of natural
numbers with the structure map (head, tail) : NN →N×NN given by

head : NN →N = σ 7→ σ(0) and tail : NN →NN = σ 7→ σ ◦ succ.

Unsurprisingly, we call head(σ) and tail(σ) the head and tail of the stream σ re-
spectively.

Exercise 2 (1pt). Denoting 2 = {0, 1}, let F = 2× (−)A send a set X to 2× XA and a
function f : X → Y to id2 × (f ◦ −) : 2× XA → 2× YA. When A is finite, show that
there is a correspondence between F–coalgebras with a finite carrier and DFAs without
initial states.

Remark 18. The components of the behavior map (i.e.: h and t in the second example) are
often called destructors or observers because they decompose elements of the coalgebra.

We define morphisms of F–coalgebras in order to obtain a category Coalg(F).

Definition 19 (F–coalgebra homomorphism). Let F : C C be a functor and α : A →
F(A) and β : B → F(B) be F–coalgebras. An F–coalgebra homomorphism from the
former to the latter is a morphism f : A→ B ∈ C1 that makes (3) commute.

A B

F(A) F(B)

f

α β

F(f)

(3)

2.3 Induction

Induction is a very well known and prevalent proof principle. In it most common form,
it says that for any predicate P on N, if P(0) is true and P(n) =⇒ P(n + 1) is true for
any n ∈N, then so is P(n) for any n ∈N. In this section, we use the power of algebras
to generalize this proof principle and give a few examples.

8

Definition 20 (Initial algebra). Let F : C C be a functor, an initial algebra is an initial
object in the category of F–algebras. Namely, it is an algbera (A, α) such that for any
other algebra (B, β), there is a unique f : A→ B making the following square commute.

F(A) F(B)

A B

α

F(f)

β

f

(4)

Example 21. The algebra (N, [0, succ]) is initial for the functor 1 + (−). Indeed, let [z, s] :
1 + X → X be another algebra for this functor, then a map f : N → X that makes the
following diagram commute must necessarily satisfy f (0) = z(∗) and f (n) = sn(z(∗)).

1 + N 1 + X

N X

[0,succ]

[id1 , f]

[z,s]

f

(5)

This completely determines f and moreover, defining f like this for any (1 + (−))-
algebra (X, [z, s]) yields an algebra homomorphism.

Exercise 3 (2pts). Show that the algebra for lists [nil, cons] : 1 + A× A∗ → A∗ is initial
for the functor 1 + A× (−) : Set Set (you know its action on sets, on morphisms it
sends f : X → Y to [id1, (idA, f)]).

We already know that initial objects are unique up to unique isomorphisms, but
Lambek also showed furthermore that initial F–algebras are fixed points of F.

Proposition 22 (Lambek). Let F : C C, if (A, α) is an initial F–algebra, then α : F(A)→
A is an isomorphism.

Exercise 4 (1.5pts). Prove Proposition 22. Hint: Consider the algebra F(α) : F2(A) →
F(A).

Initial algebras generalize the inductive reasoning we use with the natural numbers
to much more settings. We distinguish two cases where induction is used: inductive
definitions and the induction proof principle.

For the former, the general idea is that, given an initial F–algebra (A, α), we can
easily define a function f : A → B by looking at how it acts on constructors. Indeed,
with only this data, we can construct an F–algebra structure on B such that the unique
homomorphism ! : A→ B acts exactly like f .

Example 23 (Inductive definition). Recall that (A∗, [nil, cons]) is the initial (1+ A× (−))-
algebra. We would like to define the function len : A∗ →N that computes the length of
a list. Intuitively, it satisfies the equations

len(nil) = 0 len(cons(a, l)) = 1 + len(l).

9

Then, if we construct the (1 + A × (−))-algebra [z, s] : 1 + A ×N → N defined by
z(∗) = 0 and s(a, n) = 1 + n, we can verify that the unique algebra homomorphism
! : A∗ →N is the function len because both make the following diagram commute.

1 + A× A∗ 1 + A×N

A∗ N

[nil,cons]

1+idA×!

[z,s]

!=len

(6)

Exercise 5 (1pt). Use the initiality of N for the functor 1 + (−) to define the function
n 7→ 2n.

Generalizing proofs by induction in this context is more involved and we will need
the definition of F–congruences. While F–algebra homomorphisms are maps between
algebras that preserve the structure, an F–congruence is a relation between two algebras
that preserves the structure.

Definition 24. Let F : C C be a functor and (A, α) and (B, β) be F–algebras, a relation
R ⊆ A× B is an F-congruence if there is a structure map γ : F(R) → R such that the
projections π1 : R → A and π2 : R → B are algebra homomorphisms making this
diagram commute.

F(A) F(R) F(B)

A R B

α γ

Fπ1 Fπ2

β

π2π1

(7)

Example 25. If F is the identity functor, then for any algebras (A, α) and (B, β) and
any relation R ⊆ A × B, γ = (α ◦ π1, β ◦ π2) is a structure map making R into an
F–congruence.

Exercise 6 (2pts). Let F = 1 + (−), we have already seen that N is an initial F–algebra.

(a) Give a necessary and sufficient condition for R ⊆N×N to be an F–congruence.

(b) Conclude that for any F–congruence R ⊆N×N, ∀n ∈N, (n, n) ∈ R.

The next theorem generalizes the previous exercise.

Theorem 26 (General induction). Let F : C C be a functor and (A, α) be an initial
F–algebra, if R ⊆ A × A is an F–congruence, then it is reflexive, that is (a, a) ∈ R for all
a ∈ A.

Exercise 7 (1.5pts). Prove Theorem 26.

Example 27 (Induction in N). We will see how the induction principle in Theorem 26
implies the usual induction principle. Let P be a predicate on N that satisfies 0 ∈ P and
n ∈ P =⇒ n + 1 ∈ P. One can show that P× P ⊆ N×N is an F–congruence and by
general induction, (n, n) ∈ P× P for all n ∈N, i.e.: ∀n ∈N, n ∈ P.

10

Although going through all these abstractions and definitions seems like a really
convoluted way to prove the induction principle, it lead us to two new concepts. First,
we can now use inductive reasoning on all sorts of algebras even if they are in no way
similar to N. Second, we obtained an easy access to the dual of induction which we
present in the following section.

2.4 Coinduction

Definition 28 (Final coalgebra). Let F : C C be a functor, a final coalgebra is a final
object in the category of F–coalgebras. Namely, it is a coalgbera (A, ω) such that for any
other coalgebra (B, ψ), there is a unique morphism f : B → A making the following
square commute.

B A

F(B) F(A)

ψ

f

ω

F(f)

(8)

Since final coalgebras are unique up to unique homomorphism, we will refer to the final
coalgebra.

Example 29. The StrN–coalgebra (head, tail) : NN → N×NN is final. That is, for any
StrN–coalgebra, (h, t) : X →N× X, there is unique morphism ! : X →NN making (9)
commute.

X NN

N× X N×NN

(h,t)

!

(head,tail)

idN×!

(9)

The equation corresponding to (9) is (head, tail)◦! = (idN×!) ◦ (h, t). We can decompose
it into head◦! = h and tail◦! =! ◦ t. The first equation tells us that !(x) starts with
the number h(x) and the second equation tells us that the tail of !(x) is the stream
corresponding to t(x) (via !). In short, we have !(x) = h(x)·!(t(x)). If we further
decompose the tail, we obtain

!(x) = h(x) · h(t(x)) · h(t(t(x))) · · · h(tn(x)) · · · .

This should convince you that the only suitable choice for ! is x 7→ (n 7→ h(tn(x))).

Exercise 8 (3pts). Let F = 2× (−)A with A finite and consider the F–coalgebra

(ε?, ω) : 2A∗ → 2× (2A∗)A,

where for a language L ⊆ A∗ (ε denotes the empty string),

ε?(L) =

{
1 ε ∈ L
0 o/w

, ω(L) = a 7→ La = {w ∈ A∗ | a · w ∈ L}.

11

The language La = ω(L)(a) is sometimes called the left a–derivative of L. Given a DFA
M corresponding to the coalgebra [f , δ] : Q→ 2×QA, show that the function

o : Q→ 2A∗ = q 7→ {w ∈ A∗ | M accepts w when starting in state q}

is the only map making (10) commute.

2

X 2A∗

XA (2A∗)A

δ

o

f

ω

ε?

oA

(10)

Remark 30. Extending your proof to X not necessarily finite, you could obtain the fact
that (2A∗ , (ε?, ω)) is the final 2× (−)A coalgebra.

Proposition 31. If ω : A→ F(A) is a final F–coalgebra, then ω is an isomorphism.

Exercise 9 (0.5pts). Prove Proposition 31.

Final coalgebras lets us use coinductive definitions. You will see that they are quite
similar to inductive definitions you are used to. In fact, as the name suggests, they are
dual to each other, but we will not make this formal here.

Examples 32 (Coinductive definitions). Fix some set A and consider the functor StrA =
A× (−), similarly to StrN, the set AN of streams in A is the final StrA–coalgebra with
the behavior map (head, tail) as defined in Example 17. We will define three different
maps using the finality of AN.

1. The function even : AN → AN takes a stream σ = (σ(0), σ(1), . . .) and maps it to
the stream of elements of σ at even positions, namely even(σ) = (σ(0), σ(2), . . .).
To define it coinductively, we need to describe how destructors act on it. It is easy
to verify that

head(even(σ)) = head(σ) and tail(even(σ)) = even(tail(tail(σ))).

Hence, if we define a new StrA–coalgebra on AN by (h, t) = (head, tail2 = tail ◦
tail), then we conclude by finality and commutativity of the following diagram
that ! : AN → AN is the function even.

AN AN

A× AN A× AN

(head,tail2)

!

(head,tail)

idA×!

(11)

2. The operation of merging two streams is described by the function merge : AN ×
AN → AN mapping (σ, τ) to (σ(0), τ(0), σ(1), τ(1), . . .). Observe that destructors
act as follows:

head(merge(σ, τ)) = head(σ) and tail(merge(σ, τ)) = merge(τ, tail(σ)).

12

The existence of merge is then proven with finality of AN and the following coal-
gebra behavior map (where π1 and π2 are the projections):

(head ◦ π1, π2, tail ◦ π1) : AN × AN → A× AN × AN.

Exercise 10 (1pts). Similarly to the first item, show that the function odd : AN → AN

mapping σ = (σ(0), σ(1), . . .) to odd(σ) = (σ(1), σ(3), . . .) can be defined coinduc-
tively.

There is also a dual to the induction proof principle for which we need to define
bisimulation.

Definition 33 (F–bisimulation). Let F : C C be a functor and (A, ω) and (B, ψ) be
F–coalgebras, a relation R ⊆ A × B is an F-bisimulation if there is a behavior map
γ : R → F(R) such that the projections π1 : R → A and π2 : R → B are coalgebra
homomorphisms making this diagram commute.

A R B

F(A) F(R) F(B)

ω γ

π1 π2

ψ

Fπ2Fπ1

(12)

Theorem 34 (Coinductive proof principle). Let F : C C be a functor and (A, ω) be
the final F–coalgebra, if R ⊆ A× A is an F–bisimulation, then it is contained in the diagonal
relation, that is (a, a′) ∈ R implies a = a′.

Exercise 11 (0.5pts). Prove Theorem 34.

Example 35. We will use coinduction to prove that odd(merge(σ, τ)) = τ. By the pre-
vious theorem, it is enough to show that R = {(odd(merge(σ, τ)), τ) | σ, τ ∈ AN} is
an F–bisimulation. We claim that γ = (x, y) 7→ (head(x), (tail(x), tail(y))) makes the
following diagram commute.

AN R AN

A× AN A×R A× AN

(head,tail)

π1 π2

γ (head,tail)

idA×π1 idA×π2

(13)

To prove our claim, first note that

head(tail(merge(σ, τ))) = head(merge(τ, tail(σ)))
= head(τ),

so if we can show that (tail(x), tail(y)) ∈ R for any (x, y) ∈ R, then we would conclude
that the diagram commutes. This last part follows from the derivation

tail(odd(merge(σ, τ))) = odd(tail(tail(merge(σ, τ))))

= odd(tail(merge(τ, tail(σ))))
= odd(merge(tail(σ), tail(τ))).

13

Indeed, we obtain

(tail(odd(merge(σ, τ), tail(τ)) = (odd(merge(tail(σ), tail(τ))), tail(τ)) ∈ R.

Exercise 12 (3pts). (a) Given f : A → A coinductively define map f : AN → AN such
that map f (σ) = (f (σ(0)), f (σ(1)), . . .).

(b) Show by coinduction that for any σ ∈ AN, even(map f (σ)) = map f (even(σ)).

3 Brzozowski’s Algorithm Coalgebraically

In this section we follow the proof given in this paper (answers are in there).

3.1 Reachability and Observability

Let A be an alphabet, and (X, i, δ, F) be deterministic automaton, where X is the set of
states, δ : X × A → X is the transition function, i ∈ X is the initial state and F is the
set of accepting states. For our purposes, we will view i as a function i : 1 → X, F as a
function f : X → 2 = {0, 1} and δ will also denote the curried version δ : X → XA. This
leads to the following simple representation of the automaton.

1 2

X

XA

i

δ

f

(14)

In the light of the previous sections, we decompose this automaton into an algebra and
a coalgebra.

First, we have the algebra [i, δ] : 1 + (A × X) → X for the functor 1 + A × (−).
Recall from Exercise 3 that (A∗, [nil := ε, cons]) is initial for the functor 1 + (A×−), so
after currying cons, we obtain a unique morphism r : A∗ → X that makes the following
diagram commute.

1 2

A∗ X

(A∗)A XA

iε

cons

r

δ

f

rA

(15)

Explicitly, the commutativity of the left half of diagram 15 amounts to

r(ε) = i and r(cons(w, a)) = δ(r(w), (a)), ∀a ∈ A

We infer that for any word w ∈ A∗, r(w) is the state reached by the automaton after
starting in state i and reading input w.

14

https://dl.acm.org/doi/10.1145/2490818

Second, we have the coalgebra (f , δ) : X → 2× XA. Recall from diagram 10 that
(2A∗ , (ε?, ω)) is final for the functor 2 × (−)A. Thus, we obtain a unique morphism
o : X → 2A∗ that completes diagram 15.

1 2

A∗ X 2A∗

(A∗)A XA (2A∗)A

i
nil

cons

r

δ

f

o

ε?

ω

rA oA

(16)

We recall from Exercise 8 that for any x ∈ X, o(x) is the language in accepted by the
automaton if started on state x.

Definition 36. In the setting above, the automaton (X, i, δ, f) is said to be

1. reachable if r is surjective,

2. observable if o is injective, and

3. minimal if it is both reachable and observable.

Exercise 13 (1pts). (a) Describe, in automata theoretic terms, what reachability and ob-
servability mean.

(b) Informally explain why an automaton has a minimal number of states if and only if
it is both reachable and observable.

3.2 Reversing an Automaton

We will use our new method of representing automata to give the construction of an
automata which recognizes the reverse language. Morally, our procedure does the same
thing as the original reversing algorithm and the powerset construction at the same
time.

In the sequel, let 2(−) denote the contravariant powerset functor, namely, it sends X
to 2X and f : X → Y to 2 f : 2Y → 2X = S 7→ {x ∈ X : f (x) ∈ S}.

The reversed powerset construction goes like this. Given a transition function δ :
X → XA, we can uncurry it to get δ : X × A → X, then apply 2(−) to obtain 2δ : 2X →
2X×A and finally curry the elements in the codomain to obtain 2δ : 2X → (2X)A. This is
now a transition function for an automata whose states are set of states of the original
automata.

Exercise 14 (3pts). (a) Describe the action of 2δ.

(b) Continue applying 2(−) to the L.H.S. of diagram (16) to obtain (17). Briefly describe

15

what each depicted morphism does.

2

2X 2A∗

(2X)A (2A∗)A

2i

2δ

2r

2nil

2cons

2rA

(17)

Warning: For cons, you will need to use the same trick as for δ.

By currying f : X → 2 to f : 1→ 2X , we obtain an 1 + A× (−)-algebra structure on
2X which, by initiality of A∗, gives the following diagram.

1 2

A∗ 2X 2A∗

(A∗)A (2X)A (2A∗)A

f
nil

cons

R

2i

2δ

2r

2nil

2cons

RA
2rA

(18)

This is very close to what we are looking for:

• We have an automaton whose states are 2X ,

• its initial state is the set of states which contain at least one final state of the original
automaton,

• its final states are the set of states which contain the initial state of the original
automaton, and

• the morphism R tells us which states are reachable.

However, the R.H.S. of (18) is not excatly what we need to talk about observability of
this automaton. You can see that 2nil = ε?, but 2cons is a kind of reversed version of ω,
the concatenation is done in the opposite way.

Exercise 15 (1pts). Describe the unique way to complete (18) into (19).

1 2

A∗ 2X 2A∗

(A∗)A (2X)A (2A∗)A

f
nil

cons

R

2i

2δ

O

ε?

ω

RA OA

(19)

16

In conclusion, we have an automaton (2X , f , 2δ, 2i) which is reachable if R is surjec-
tive and observable if O is injective. Moreover, we can show two imporant properties.

Exercise 16 (4pts). (a) If (X, i, δ, f) recognizes the language L, then (2X , f , 2δ, 2i) recog-
nizes the reverse of L.

(b) If (X, i, δ, f) is reachable, then (2X , f , 2δ, 2i) is observable.

3.3 Correctness of the Algorithm

Exercise 17 (1pt). Show that Brzozowski’s algorithm is correct. Namely, if (X, i, δ, f)
recognizes a language L, then

• applying the (new) reverse construction,

• keeping only the reachable states,

• applying the reverse construction again, and

• keeping only the reachable states

yields an automaton which is minimal and recognizes the language L.

17

	Preliminaries on Automata
	Deterministic Finite Automata
	Nondeterminisitic Finite Automata
	Brzozowski's Algorithm

	(Co)algebras and (Co)induction
	Algebras
	Coalgebras
	Induction
	Coinduction

	Brzozowski's Algorithm Coalgebraically
	Reachability and Observability
	Reversing an Automaton
	Correctness of the Algorithm

