
• • C A T E G O R Y • •

• • • T H E O R Y • •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• • • R A L P H • • •

• • • S A R K I S • • •

My First Category Theory Textbook

Ralph Sarkis

Contents

0 Preliminaries 5

0.1 Abstract Algebra 5

0.2 Order Theory 11

0.3 Topology 14

1 Categories and Functors 19

1.1 Categories 19

1.2 Functors 27

1.3 Diagram Paving 34

2 Duality 37

2.1 Contravariant Functors 38

2.2 Opposite Category 40

2.3 Duality in Action 41

2.4 More Vocabulary 48

3 Limits and Colimits 53

3.1 Examples 53

3.2 Generalization 67

3.3 Diagram Chasing 74

4 Universal Properties 81

4.1 Examples 81

4.2 Generalization 93

4.3 Comma Categories 94

5 Natural Transformations 99

5.1 Functor Categories 99

5.2 The 2–category Cat 107

5.3 Equivalences 114

4 ralph sarkis

6 Yoneda Lemma 121

6.1 Representable Functors 121

6.2 Yoneda Lemma 126

6.3 Universality as Representability 130

7 Adjunctions 135

7.1 Equivalent Definitions 135

7.2 Results and Examples 141

8 Monads and Algebras 151

8.1 POV: Category Theory 151

8.2 POV: Universal Algebra 161

8.3 POV: Computer Programs 165

8.4 Exercises 169

9 Solutions to Exercises 171

9.1 Solutions to Chapter 1 171

9.2 Solutions to Chapter 2 172

9.3 Solutions to Chapter 3 174

9.4 Solutions to Chapter 4 177

9.5 Solutions to Chapter 5 179

9.6 Solutions to Chapter 6 181

9.7 Solutions to Chapter 7 181

9.8 Solutions to Chapter 8 182

0 Preliminaries
0.1 Abstract Algebra 5

0.2 Order Theory 11

0.3 Topology 14

Our main goal here is to introduce enough notation and terminology so that this
book is self-contained.0 0 Especially with the heavy use of the knowledge

package, I felt it was necessary to cover enough
background material in order to have the least
amount of external links in the book.

We assume you are familiar and comfortable with basic concepts about sets (e.g.:
subsets, union, Cartesian product, cardinality, equivalence classes, quotients, etc.),
functions (e.g.: injectivity, surjectivity, inverses, (pre)image, etc.), logic (e.g.: quan-
tifiers, implication) and proofs (e.g.: you can write, read and understand proofs),1 1 The very first things usually taught in early un-

dergraduate mathematics courses.and we will not recall anything here. However, we need to have a little talk about
foundations.

Several times in our coverage of category theory, we will use the term collection
in order to avoid set-theoretical paradoxes. Collections are supposed to behave just
like sets except that we will never consider collections containing other collections.
We do not make it more formal because there are many ways to do it (dealing with
so-called size issues),2 and none of them are relevant to this course. 2 Most commonly, people use classes or

Grothendieck universes. If this sticky point wor-
ries you, I suggest you keep it in the back of
your mind and go read https://arxiv.org/

pdf/0810.1279.pdf when you are a bit more
comfortable with category theory.

Still, you need to know why we cannot use sets as is usual in all other courses.
In short, there exist collections of objects that cannot be sets.3 In our case, we will

3 Famous examples include the collection of or-
dinal numbers which, by the Burali–Forti para-
dox, cannot be a set and the collection of all
sets that do not contain themselves which, by
the Russel paradox, cannot be a set.

need to talk about the collection of all sets and the collection of all groups (among
others) and they cannot form sets. For the former, it is easy to see because if S is
the set of all sets, then it contains all its subsets and hence P(S) ⊆ S, this leads to
the contradiction |P(S)| ≤ |S| < |P(S)|.4

4 For a set X, |X| denotes the cardinal of X
and P(X) denotes the powerset of X, i.e. the
set of all subsets of X. The strict inequality
|S| < |P(S)| is due to Georg Cantor’s famous
diagonalization argument.

In the rest of this chapter, we cover the necessary background that we will use in
the rest of the book. It is supposed to be a quick and (unfortunately) dry overview of
stuff you may or may not have seen, so we will not dwell on explanations, intuitions
and motivations.5 You can safely skip these sections and come back whenever you

5 Contrarily to the other chapters of this book.

click on a word or symbol that is defined here. We hope that this will save you from
several trips to Wikipedia.

0.1 Abstract Algebra

Here we recall definitions, examples and results you may have seen in classes on
abstract algebra or linear algebra.6 6 Monoids are not commonly covered, but they

are simpler than groups and we need them at
one point so we present them here.

https://arxiv.org/pdf/0810.1279.pdf
https://en.wikipedia.org/wiki/Cantor's_diagonal_argument

6 ralph sarkis

Monoids

Definition 1 (Monoid). A monoid is a set M equipped with a binary operation
· : M×M → M (written infix) called multiplication and an identity element7 1M 7 Some authors call 1M the unit or the neutral

element.satisfying for all x, y, z ∈ M

(x · y) · z = x · (y · z) and 1M · x = x = x · 1M.

If it satisfies ∀x, y ∈ M, x · y = y · x, M is a commutative monoid. Depending on the context, we will refer to a
monoid either as M or (M, ·) or (M, ·, 1M).

Remark 2. We will quickly drop the · symbol and denote multiplication with plain
juxtaposition (i.e. xy := x · y) for monoids and other algebraic structures with a
multiplication.

Examples 3. 1. For any set S, the set of function from S to itself forms a monoid
with the multiplication being composition of functions and the identity being the
identity function s 7→ s. We denote this monoid by SS.

2. The sets N, Z, Q and R8 equipped with the operation of addition are all com- 8 The symbols N, Z, Q and R denote respec-
tively the sets of natural numbers, integers, ra-
tionals and real numbers.

mutative monoids.

3. For any set S, the powerset P(S) has two simple monoid structures: one where
the multiplication is ∪ and the identity is ∅ ⊆ S, and the other where multipli-
cation is ∩ and the identity is S ⊆ S.

Definition 4 (Submonoid). Given a monoid M, a submonoid of M is a subset
N ⊆ M containing 1M that is closed under multiplication (i.e. ∀x, y ∈ N, x · y ∈ N).9 9 This implies N is also a monoid with the mul-

tiplication and identity inherited from M.
Example 5. For any set S, the set of bijections from S to itself, denoted by ΣS, is a
submonoid of SS because the composition of two bijections is bijective.

Definition 6 (Homomorphism). Let M and N be two monoids, a monoid homo-
morphism from M to N is a function f : M→ N satisfying the following property:

f (1M) = 1N and ∀x, y ∈ M, f (xy) = f (x) f (y).

When f is a bijection, we call it a monoid isomorphism, say that M and N are
isomorphic, and write M ∼= N.

Definition 7 (Kernel). The kernel of a homomorphism f : M → N is the preimage
of 1N : ker(f) := f−1(1N). For any homomorphism f , ker(f) is a submonoid of
M.10 10 Similarly, the image of a homomorphism is

also a submonoid.
Example 8. The inclusions (N,+) → (Z,+) → (Q,+) → (R,+) are all monoid
homomorphisms with trivial kernel.11 This implies this is also a chain of inclusions 11 i.e. the kernel only contains the identity.

as submonoids.

Definition 9 (Monoid action). Let M be a monoid and S a set, an (left) action of M
on S is an operation ⋆ : M× S→ S satisfying for all x, y ∈ M and s ∈ S The data (M, S, ⋆) will also be called an M–set

and we may refer to it abusively with S.

(x · y) ⋆ s = x ⋆ (y ⋆ s) and 1M ⋆ s = s.

my first category theory textbook 7

Any monoid action has a permutation representation defined to be the map

σ⋆ : M→ SS = x 7→ (s 7→ x ⋆ s).

The properties of the action imply σ⋆ is a homomorphism. Conversely, given a
homomorphism σ : M→ SS (i.e. σ(1M) is the identity function and σ(xy) = σ(x) ◦
σ(y) for any x, y ∈ M), there is a monoid action ⋆σ defined by x ⋆σ s = σ(x)(s).12 12 These are inverse operations, i.e.

σ⋆σ = σ and ⋆σ⋆ = ⋆.Example 10. Any monoid M has a canonical left action on itself defined by x ⋆ m =

xm for all x, m ∈ M.

Groups

Definition 11 (Group). A group is set G equipped with a binary operation · :
G × G → G called multiplication, an inverse operation (−)−1 : G → G and an
identity element 1G such that (G, ·, 1G) is a monoid and for all x ∈ G

x · x−1 = 1G = x−1 · x.

If (G, ·, 1G) is a commutative monoid, we say that G is an abelian group.

Examples 12. 1. For any set S, we saw ΣS was a submonoid of SS, and it is in fact
a group where the inverse of a function f is f−1 (it exists because f is bijective).
We denote this group ΣS and call it the group of permutations of S.13

13 For n ∈ N, Σn denotes the group of permuta-
tions of {1, . . . , n}.

2. The monoids on (Z,+), (Q,+) and (R,+) are also abelian groups with the
inverse of x being −x.

3.

Definition 13 (Subgroup). Given a group G, a subgroup of G is a submonoid H of
G closed under taking inverses (i.e. ∀x ∈ H, x−1 ∈ H).14 14 This implies H is also a group with the mul-

tiplication, inverse and identity inherited from
G.Example 14. For any group G and subset S ⊆ G, the subgroup generated by S

inside G, denoted by ⟨S⟩ is the smallest subgroup containing S.15 15 An explicit construction is

⟨S⟩ = {x1 · · · xn | n ∈N, x1, . . . , xn ∈ S ∪ {1G}} .Definition 15 (Homomorphism). Let G and H be two groups, a group homomor-
phism from G to H is a monoid homomorphism f : G → H. It follows that16 16 For this, you need to show that inverses are

unique.

∀x ∈ G, f (x−1) = f (x)−1.

When f is a bijection, we call it a group isomorphism, say that G and H are iso-
morphic, and write G ∼= H.

Example 16. For any group G and element g ∈ G, we call conjugation by g the
homomorphism cg : G → G defined by cg(x) = gxg−1.17 17 It is a homomorphism as g1G g−1 = gg−1 = 1G

and

gxyg−1 = gx1Gyg−1 = gxg−1gyg−1.
Definition 17 (Kernel). The kernel of a homomorphism f : G → H is the preimage
of 1H : ker(f) := f−1(1H). For any homomorphism f , ker(f) is a subgroup of G.18

18 Similarly, the image of a homomorphism is
also a subgroup.Example 18. For any group G and element g ∈ G, ker(cg) = {1G}. Indeed, if

gxg−1 = 1G, conjugating by g−1 on both sides yields x = 1G.

8 ralph sarkis

Definition 19 (Normal subgroup). A subgroup N of G is called normal if for any
g ∈ G and n ∈ N, gng−1 ∈ N. In words, N is closed under conjugation by G. We
write N ◁ G when N is a normal subgroup of G.19 19 The kernel of any homomorphism f is a nor-

mal subgroup as for any h ∈ ker f and any
g ∈ G, we have

f (ghg−1) = f (g) f (h) f (g)−1 = f (g)1 f (g−1) = 1.

Proposition 20. For any subgroup H of G, the relation ∼H defined by

g ∼H g′ ⇔ ∃h ∈ H, gh = g′

is an equivalence relation.

Proof. Any subgroup contains 1G, so g ∼H g is witnessed by g1G = g, hence ∼H is
reflexive. If gh = g′, then g = ghh−1 = g′h−1, thus ∼H is symmetric. If gh = g′ and
g′h′ = g′′, then ghh′ = g′′ and since H is a subgroup hh′ ∈ H, we conclude ∼H is
transitive.

Definition 21 (Quotient). Let G be a group and N a normal subgroup of G, the
multiplication of G is well-defined on equivalence classes of ∼N , namely, if g ∼N g′

and h ∼N h′, then gh ∼N g′h′.20 The quotient G/N is the group whose elements 20 Suppose gn = g′ and hn′ = h′ for n, n′ ∈ N,
then using the fact that h−1nh ∈ N, we let n′′ :=
h−1nhn′ ∈ N and we find

g′h′ = gnhn′ = ghh−1nhn′ = ghn′′,

thus gh ∼N g′h′.

are equivalence classes of ∼N with the multiplication [g] · [h] := [g · h] and identity
1G/N = [1G] (where [g] denotes the equivalence class of ∼N containing g).

Definition 22 (Group action). Let G be a group and S a set, an (left) action of G on
S is a (left) monoid action of G on S. A set S equipped with action of G is called
a G–set. It follows from the properties of an action that the function s 7→ g ⋆ s is a
bijection, hence the permutation representation σ⋆ is a homomorphism G → ΣS.

Example 23. Any group G has a canonical left action on itself defined by x ⋆m = xm
for all x, m ∈ G.

Definition 24 (Orbit). Let S be a G–set, an orbit of S is a maximal subset of S closed
under the action of G. Namely, it is a subset A ⊂ S such that g ⋆ a ∈ A for any
g ∈ G and a ∈ A, and no subset strictly including A and strictly included in S
(A ⊂ A′ ⊂ S) has this property.

Rings

Definition 25 (Ring). A ring is a set R equipped with a monoid structure (R, ·, 1R)

and an abelian group structure (R,+, 0R)
21 such that for all x, y, z ∈ R 21 We call · the multiplication and + the addi-

tion of the ring.

x · (y + z) = (x · y) + (x · z).

If (R, ·, 1R) is a commutative monoid, we say that R is commutative.

Examples 26. 1. The abelian groups (Z,+), (Q,+) and (R,+) are also commuta-
tive rings with multiplication being the standard multiplication of numbers.

2. For any ring R and any n ∈N, the set of matrices Rn×n is a ring where addition
is done pointwise, multiplication is the standard multiplication of matrices, 1Rn×n

is the matrix with 1R in each diagonal entry and 0R everywhere else, and 0Rn×n

is the matrix with 0R everywhere.

https://en.wikipedia.org/wiki/Matrix_multiplication

my first category theory textbook 9

Proposition 27. Let R be a ring, for any r ∈ R, 0R · r = 0R = r · 0R.

Proof. Here is the derivation for one equality (the other is symmetric):

0R · r = (1R − 1R) · r = 1R · r− 1R · r = r− r = 0R.

Definition 28 (Subring). Given a ring R, a subring of R is a subset S ⊆ R that is
both a submonoid for · and a subgroup for +.22 22 This implies S is also a ring with the multipli-

cation and addition inherited from R.
Definition 29 (Homomorphism). Let R and S be two rings, a ring homomorphism
from R to S is a function f : R → S that is both a monoid homomorphism for the
operation · and a group homomorphism for the operation +. Namely, it satisfies

∀x, y ∈ R, f (x · y) = f (x) · f (y) f (1R) = 1S

∀x, y ∈ R, f (x + y) = f (x) + f (y) f (0R) = 0S.

When f is a bijection, we call it a ring isomorphism, say that R and S are isomor-
phic, and write R ∼= S.

Definition 30 (Kernel). The kernel of a homomorphism f : R → S is the preimage
of 0S: ker f := f−1(0S). For any homomorphism, ker f is a subring of S.

As for monoids and groups, the image of a homomorphism is a subring, and as
for groups the kernel satisfies an additional property: it is an ideal.

Definition 31 (Ideal). Given a ring R, an ideal of R is a subring I such that for any
i ∈ I and r, s ∈ R, ris ∈ I.23 23 An ideal is not only closed under multiplica-

tion but it is also preserved by multiplication by
elements outside of the ideal.Proposition 32. For any subring S of R, the relation ∼S defined by

r ∼S r′ ⇔ ∃s ∈ S, r + s = r′

is an equivalence relation.24 24 Apply Proposition 20 to the group (R,+) and
its subgroup (S,+).

Definition 33 (Quotient). Let R be a ring and I be an ideal of R, the addition and
multiplication of R are well-defined on equivalence classes of ∼I , namely, if r ∼I r′

and s ∼I s′, then r + s ∼I r′ + s′ and rs ∼I r′s′.25 The quotient R/I is the ring 25 For addition, we can use the same proof as for
quotient groups because I is a normal subgroup
of (R,+) (any subgroup of an abelian group is
normal). For multiplication, suppose r + i = r′

and s + j = s′ for i, j ∈ I, then

r′s′ = (r + i)(s + j) = rs + rj + is + ij,

and since I is an ideal, rj + is + ij ∈ I. We con-
clude rs ∼I r′s′.

whos elements are equivalence classes of ∼I with the addition [r] + [s] := [r + s],
the multiplication [r] · [s] := [r · s], 0R/I := [0R], and 1R/I := [1R].

Definition 34 (Units). An element of a ring is called a unit if it has a multiplicative
inverse. Namely, x ∈ R is a unit if there exists x−1 such that xx−1 = 1R = x−1x. We
denote by R× the set of units of R, it is a group with the multiplication inherited
from R.

Example 35. The group of unit of Rn×n is called the general linear group over R
and denoted by GLn(R). It contains all the invertible26 n× n matrices with entries 26 Sometimes called non-singular.

in R.

10 ralph sarkis

Proposition 36. Any ring homomorphism f : R→ S sends units of R to units of S.27 27 By restricting f to R×, we obtain a group ho-
momorphism

f× : R× → S×.Proof. If x ∈ R has a multiplicative inverse x−1, then the homomorphism properties
imply

f (x) f (x−1) = f (xx−1) = f (1R) = 1S = f (1R) = f (x−1x) = f (x−1) f (x),

thus f (x−1) is the multiplicative inverse of f (x).

Fields

Definition 37 (Field). A field is a commutative ring where every non-zero element
is a unit.

Example 38. The rings Q and R are fields, but Z is not since the Z× = {−1, 1}.

Definition 39 (Characteristic). The characteristic of a field k is the minimum n ∈N

such that 1k+
n· · · +1k = 0K. If no such n exists, the characteristic of k is infinite.28 28 One can show the characteristic of a field is

never a composite number, it is either prime or
infinite.Examples 40. Fix a prime number p. The set pZ of multiples of p is an ideal of the

ring Z and Z/pZ is a field of characteristic p. The field Q has infinite characteristic.

Vector Spaces

Fix a field k.

Definition 41 (Vector space). A vector space over k is a set an abelian group
(V,+, 0) along with an operation · : k× V → V called scalar multiplication such
that the following holds for any x, y ∈ k and u, v ∈ V:29 29 We will not distinguish between the additions

and zeros in k and V.

(xy) · v = x · (y · v) 1 · v = v

(x + y) · v = x · v + y · v x · (u + v) = x · u + x · v.

It follows that 0 · v = 0. We call elements of V vectors.

Example 42. For any n ∈N, the set kn has a vector space structure, where addition
and scalar multiplication are done pointwise, i.e.:

(u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn) x · (v1, . . . , vn) = (xv1, . . . , xvn).

Definition 43 (Subspace). Given a vector space V, a subspace of V is a subset
W ⊆ V such that 0 ∈W, and for any x ∈ k and u, w ∈W, x ·w ∈W and u + w ∈W.

Definition 44 (Linear map). Let V and W be two vector spaces over k, a linear map
from V to W is a function T : V →W satisfying

∀x ∈ k, ∀u, v ∈ V, T(x · v) = x · T(v) T(u + v) = T(u) + T(v).

When T is a bijection, we call it a linear isomorphism, say that R and S are isomor-
phic, and write V ∼= W.

my first category theory textbook 11

Definition 45 (Linear combination). Let V be a vector space and v1, . . . , vn ∈ V, a
linear combination of these vectors is a sum

n

∑
i=1

aivi = a1 · v1 + · · ·+ anvn,

where a1, . . . , an ∈ k are called the coefficients.

Definition 46 (Basis). Let V be a vector space and S ⊆ V. We say that S is linearly
independent if a linear combination of vectors in S is the zero vector if and only
if all coefficients are zero. We say that S is generating if any v ∈ V is a linear
combination of vectors in S. We say that S is a basis of V if it is linearly independent
and generating. The cardinality of a basis S of V is called the dimension of V.30

30 Using the axiom of choice, one can show a
basis always exists and all bases must have the
same cardinality, hence the dimension of a vec-
tor space is well-defined.

Proposition 47. A linear map T : V → W is completely determined by where it sends a
basis of V.

Proposition 48. If a vector space V over k has dimension n ∈N, then V ∼= kn.

Definition 49 (Dual).

0.2 Order Theory

In this section, we briefly cover some early definitions and results from order the-
ory. Since this subject is not usually taught in undergraduate courses, we spend
a bit more time. In fact, we even introduce stuff we will not use later to make
sure readers can get more familiar with the most important objects: posets and
monotone functions.

Definition 50 (Poset). A poset (short for partially ordered set) is a pair (A,≤)
comprising a set A and a binary relation ≤ ⊆ A× A that is

1. reflexive (∀x ∈ A, x ≤ x),

2. transitive (∀x, y, z ∈ A if x ≤ y and y ≤ z then x ≤ z), and

3. antisymmetric (∀x, y ∈ A if x ≤ y and y ≤ x the x = y).

The relation is also called a partial order.31 31 If antisymmetry is not satisfied, ≤ is called a
preorder.

Examples 51. 1. The usual non-strict orders (≤ and ≥) on N, Z, Q and R are all
partial orders. The strict orders do not satisfy reflexivity.

2. The divisibility relation | on N (n | m if and only if n divides m) is a partial order.

3. For any set S, the powerset of S equipped with the subset relation (⊆) is a poset.

For any monoid M, there are three preorders
defined by the so-called Green’s relations:

∀x, y ∈ M, x ≤L y⇔ ∃m ∈ M, x = my

∀x, y ∈ M, x ≤R y⇔ ∃m ∈ M, x = ym

∀x, y ∈ M, x ≤J y⇔ ∃m, m′ ∈ M, x = mym′4. Any subset of a poset inherits a poset structure by restricting the partial order.

Definition 52 (Monotone). A function f : (A,≤A) → (B,≤B) between posets is
monotone (or order-preserving) if for any a, a′ ∈ A, a ≤A a′ =⇒ f (a) ≤B f (a′).

https://en.wikipedia.org/wiki/Green%27s_relations

12 ralph sarkis

Example 53. You probably already know lots of monotone functions, but let us give
two less intuitive examples. Let f : S → T be a function, the image map of f 32 is

32 Which we abusively denote by f .
the function P(S) → P(T) defined by S ⊇ X 7→ f (X) := { f (x) | x ∈ X}. When
both powersets are equipped with the inclusion partial order, the image map is
monotone because X ⊆ X′ ⊆ S implies f (X) ⊆ f (X′).

The preimage map is

f−1 : P(T)→ P(S) = T ⊇ Y 7→ f−1(Y) := {y ∈ S | f (y) ∈ Y}.

It is also order-preserving because Y ⊆ Y′ ⊆ T implies f−1(Y) ⊆ f−1(Y′).

Proposition 54. The composition of monotone functions between posets is monotone.

Definition 55 (Dual). The dual order33 of a poset (A,≤), denoted by (A,≤)op, is
33 This definition lets us avoid many symmetric
arguments.the same set equipped with the converse relation ≥ defined by

∀x, y ∈ A, x ≥ y⇔ y ≤ x.

Definition 56 (Bounds). Let (A,≤) be a poset and S ⊆ A, then a ∈ A is an upper
bound of S if ∀s ∈ S, s ≤ a. Moreover, a ∈ A is a supremum of S, if it is a least
upper bound, that is, a is an upper bound of S and for any upper bound a′ of S,
a ≤ a′. A supremum of S is denoted by ∨S, but when S contains only two elements,
we use the infix notation s1 ∨ s2 and call this a join.

A lower bound (resp. infimum/meet) of S is an upper bound (resp. supre-
mum/join) of S in the dual order (A,≤)op.34 An infimum of S is denoted by ∧S or 34 Explicityly, a ∈ A is a lower bound of S if ∀s ∈

S, a ≤ s. It is an infimum of S if, in addition to
being a lower bound of S, any lower bound a′ of
S satisfies a′ ≤ a.

s1 ∧ s2 in the binary case.

Proposition 57. Infimums and supremums are unique when they exist.35

35 This holds by antisymmetry.

Definition 58 (Complete lattice). A complete lattice is a poset (L,≤) where every
subset has a supremum and an infimum.36 In particular, L has a smallest element 36 Notice that, we can see ∨ and ∧ as monotone

maps from (P(L),⊆) to (L,≤).∨∅ and a largest element ∧∅ (they are usually called top and bottom respectively).

Examples 59. 1. For any set S, (P(S),⊆) is a complete lattice. the supremum of a
family of subsets is their union and the infimum is their intersection.

2. Defining supremums and infimums on the poset (N, |) is subtle. When S ⊆ N

is non-empty, ∧S is the greatest common divisor of all elements in S and ∧∅ is
0 because any integer divides 0. For a finite and non-empty S ⊆ N, ∨S is the
least common multiple of all elements in S. If S is infinite, then ∨S is 0 and the
supremum of the empty set is 1 because 1 divides any integer.

You might be wondering about possible posets where all infimums exist but not
necessarily all supremums or vice-versa, it turns out that this is not possible as
shown below.

Proposition 60. Let (L,≤) be a poset, then the following are equivalent:

(i) (L,≤) is a complete lattice.

my first category theory textbook 13

(ii) Any S ⊆ L has a supremum.

(iii) Any S ⊆ L has an infimum.

Proof. (i) =⇒ (ii), (i) =⇒ (iii) and (ii) + (iii) =⇒ (i) are all trivial. Also, by using
duality, we only need to prove (ii) =⇒ (iii).37 For that, it suffices to note that, for 37 If this implication is true for any (L,≤), then it

is true, in particular, for (L,≥). This implication
for (L,≥) is equivalent to the converse implica-
tion for (L,≤).

any S ⊆ L, we can define ∧S to be the least upper bound for lower bounds of S.
Formally,

∧S =
∨
{a ∈ L | ∀s ∈ S, a ≤ s}.

Defined that way, ∧S is a lower bound of S because if s ∈ S, then s ≥ a for every
lower bound a of S, thus ∧S, being the least upper bound of the lower bounds, is
smaller than s. By definition, ∧S is greater than any other lower bound of S, hence
it is indeed the infimum of S.

Definition 61 (Fixpoints). Let f : (L,≤)→ (L,≤), a pre-fixpoint of L is an element
x ∈ L such that f (x) ≤ x. A post-fixpoint is an element x ∈ L such that x ≤ f (x).
A fixpoint (or fixed point) of f is a pre- and post-fixpoint.

38 This is actually a weaker version of the
Knaester-Tarski theorem. The latter states that
the fixpoints of a monotone function f form a
complete lattice.

Theorem 62 (Knaester–Tarski38). Let (L,≤) be a complete lattice and f : L → L be
monotone.

1. The least fixpoint of f is the least pre-fixpoint µ f := ∧{a ∈ L | f (a) ≤ a}.

2. The greatest fixpoint of f is the greatest post-fixpoint ν f := ∨{a ∈ L | a ≤ f (a)}.

Proof. 1. Any fixpoint of f is in particular a pre-fixpoint, thus µ f , being a lower
bound of all pre-fixpoints, is smaller than all fixpoints. Moreover, because for
any pre-fixpoint a ∈ L, f (µ f) ≤ f (a) ≤ a, f (µ f) is also a lower bound of the
pre-fixpoints, so f (µ f) ≤ µ f . We infer that f (f (µ f)) ≤ f (µ f), so f (µ f) is a pre-
fixpoint and µ f ≤ f (µ f). We conclude that µ f is a fixpoint by antisymmetry. The proof of the second item is the proof of the

first item done in the dual order.

2. Any fixpoint of f is in particular a post-fixpoint, thus ν f , being an upper bound
of post-fixpoints, is bigger than all fixpoints. Moreover, because for any post-
fixpoint a ∈ L, a ≤ f (a) ≤ f (ν f), f (ν f) is an upper bound of the post-fixpoints,
so ν f ≤ f (ν f). We infer that f (ν f) ≤ f (f (ν f)), so f (ν f) is a post-fixpoint and
f (ν f) ≤ ν f . We conclude that ν f is a fixpoint by antisymmetry.

Definition 63 (Closure operator). Let (A,≤) be a poset, a closure operator on A is
a map c : A→ A that is

1. monotone,

2. extensive (∀a ∈ A, a ≤ c(a)), and

3. idempotent (∀a ∈ A, c(a) = c(c(a))).

Example 64. The floor (⌊−⌋) and ceiling (⌈−⌉) operations are closure operators on
(R,≥) and (R,≤) respectively.

14 ralph sarkis

Definition 65 (Galois connection). Given two posets (A,≤) and (B,⊑), a Galois
connection is a pair of monotone functions l : A → B and r : B → A such that for
any a ∈ A and b ∈ B,

l(a) ⊑ b⇔ a ≤ r(b).

For such a pair, we write l ⊣ r : A→ B.

Proposition 66. Let l ⊣ r : A→ B be a Galois connection, then l and r are monotone.

Proof. Suppose a ≤ a′, we will show l(a) ⊑ l(a′). Since l(a′) ⊑ l(a′), using ⇒ of
the Galois connection yields a′ ≤ r(l(a′)), and, by transitivity, we have a ≤ r(l(a′)).
Then, using⇐ of the Galois connection, we find l(a) ⊑ l(a′). We conclude that l is
monotone.

A symmetric argument works to show r is monotone.

Example 67.

Proposition 68. Let l ⊣ r : A→ B be a Galois connection, then r ◦ l : A→ A is a closure
operator.

Proof. Since r and l are monotone, r ◦ l is monotone. Also, for any a ∈ A, l(a) ⊑ l(a)
implies a ≤ r(l(a)), so r ◦ l is extensive.

Now, in order to prove r ◦ l is idempotent, it is enough to show that39 39 The ≤ inequality follows by extensiveness.

r(l(a)) ≥ r(l(r(l(a)))).

Observe that since r(b) ≤ r(b) for any b ∈ B, we have l(r(b)) ≤ b, thus in particular,
with b = l(a), we have l(r(l(a))) ≤ l(a). Applying r which is monotone yields the
desired inequality.

Proposition 69. Let l ⊣ r : A→ B and l′ ⊣ r : A→ B be Galois connections, then l = l′.

Proposition 70. Let l ⊣ r : A→ B and l ⊣ r′ : A→ B be Galois connections, then r = r′.

0.3 Topology

In this section, we introduce the basic terminology of topological spaces. Again we
go a bit further than needed to help readers that first learn about topology here. We
end this section by recalling some definitions about metric spaces.

Definition 71. A topological space is a pair (X, τ), where X is a set and τ ⊆ P(X)

is a family of subsets of X closed under arbitrary unions and finite intersections40 40 For any family of open sets {Ui}i∈I ⊆ τ,⋃
i∈I

Ui ∈ τ,

and if I is finite, ⋂
i∈I

Ui ∈ τ.

whose elements are called open sets of X. We call τ a topology on X.
The complement of an open set U, denoted by Uc, is said to be closed.41

41 Observe that both the empty set and the whole
space are open and closed (sometimes referred
to as clopen) because

∅ =
⋃

U∈∅

U and X =
⋂

U∈∅

U and ∅ = Xc.

Example 72. On any set X, there are two trivial and extreme topologies.42 The

42 Trivial because

discrete topology τ⊤ := PX contains all the subsets of X. We can view (X, τ⊤)

as a space where all points of X are separated from each other. The codiscrete
topology τ⊥ := {∅, X} contains only the subsets that must be open by definition of
a topology. We can view (X, τ⊥) as a space where all points of X are glued together
with no space in-between.

my first category theory textbook 15

In the sequel, fix a topological space (X, τ).

Proposition 73. Let (Ci)i∈I be a family of closed sets of X, then ∩i∈ICi is closed and if I
is finite, ∪i∈ICi is also closed.43 43 This lemma gives an alternative to the axioms

of Definition 71. Indeed, it is sometimes more
convenient to define a topological space by giv-
ing its closed sets, and you can show the axioms
about open sets still hold.

Proof. Both statements readily follow from DeMorgan’s laws and the fact that the
complement of a closed set is open and vice-versa. For the first one, DeMorgan’s
laws yield ⋂

i∈I
Ci =

(⋃
i∈I

Cc
i

)c

,

and the LHS is the complement of a union of opens, so it is closed. For the second
one, DeMorgan’s laws yield

⋃
i∈I

Ci =

(⋂
i∈I

Cc
i

)c

,

and the LHS is the complement of a finite intersection of opens, so it is closed.

Proposition 74. A subset A ⊆ X is open if and only if for any x ∈ A, there exists an open
U ⊆ A such that x ∈ U.

Proof. (⇒) For any x ∈ A, set U = A.
(⇐) For each x ∈ X, pick an open Ux ⊆ A such that x ∈ A, then we claim

A = ∪x∈AUx which is open44. The ⊆ inclusion follows because each x ∈ A has a 44 Arbitrary unions of opens are open.

set Ux in the union that contains x. The ⊇ inclusion follows because each term of
the union is a subset of A by assumption.

Proposition 75. A subset A ⊆ X is closed if and only if for any x /∈ A, there exists an
open U such that, x ∈ U and U ∩ A = ∅.45 45 This result is simply a restatement of the last

one by setting A = Ac.

Definition 76. Given A ⊆ X, the closure of A, denoted by A is the intersection of all
closed sets containing A. One can show that A is the smallest closed set containing
A.46 Then, it follows that A is closed if and only if A = A. 46 A is closed because it is an intersection of

closed sets and any closed sets containing A also
contains A by definition.Here are more easy results on the closure of a subset.

Proposition 77. Given A, B ⊆ X then the following statements hold:

1. A ⊆ B =⇒ A ⊆ B

2. A ⊆ A

3. A = A

4. ∅ = ∅

5. (A ∪ B) = A ∪ B

Proof of Lemma 77. 1. By definition, B contains
B, thus A, but B is closed, so it must contain
A.

2. By definition.

3. A is closed, so its closure is itself.

4. 3 applied to ∅.

5. ⊆ follows because the LHS is the smallest
closed set containing A ∪ B and the RHS is
closed and contains A ∪ B.
⊇: Since the RHS is closed, we have
(A ∪ B) = A ∪ B implying that the RHS
is the smallest closed set containing A ∪ B.
Then, since the LHS is a closed set contain-
ing A and B, it contains A and B and hence
must contain the RHS.

16 ralph sarkis

Remark 78. If we view P(X) as partial order equipped with the inclusion relation,
the previous lemma is about good properties of the function (−) : P(X) → P(X).
Namely, we showed in the first three points that it is a monotone, extensive and
idempotent, and therefore it is a closure operator.47 47 In fact, this is where the terminology comes

from.
Definition 79 (Dense). A subset A ⊆ X is said to be dense (in X) if any non-empty
open set intersects A non-trivially, that is, ∀∅ ̸= U ∈ τ, A ∩U ̸= ∅.

Proposition 80 (Decomposition). Let A ⊆ X, then A = A ∩ (A ∪
(

A
)c
), where A is

closed and A ∪
(

A
)c is dense. This results says that any subset of X can be decomposed

into a closed and a dense set.

Proof. The equality is clear48 and A is closed by definition. It is left to show that 48 We use (in this order) distributivity of ∩ over
∪, the fact that a set and its complement inter-
sect trivially and the inclusion A ⊆ A:

A ∩ (A ∪
(

A
)c
) = (A ∩ A) ∪ (A ∩

(
A
)c
)

= A ∪∅

= A

A ∪
(

A
)c is dense. Let U ̸= ∅ be an open set. If U intersects A, we are done.

Otherwise, we have the following equivalences:

U ∩ A = ∅⇔ A ⊆ Uc ⇔ A ⊆ Uc ⇔ U ⊆
(

A
)c ,

where the second⇒ holds because Uc is closed. We conclude U ∩
(

A
)c ̸= ∅.

Proposition 81. A subset A ⊆ X is dense if and only if A = X.

Proof. (⇒) Since
(

A
)c is open but it intersects trivially the dense set A, it must be

empty, thus A is the whole space.
(⇐) Let U be an open set such that U ∩ A = ∅, then A is contained in the closed

set Uc, but this implies A ⊆ Uc,49 thus U is empty. 49 Recall that the closure of A is the smallest
closed set containing A.

Definition 82 (Interior). Let A ⊆ X, the interior of A, denoted by Ao is the union
of all open sets contained in A. Similarly to the closure, we can check that that Ao

is the largest open subset of A and thus that A is open if and only if A = Ao.50 50 It also follows that A ⊆ B =⇒ Ao ⊆ Bo and
that Aoo = Ao.

We end this section by presenting a largely preferred way of defining a topology
that avoid describing all open sets.

Definition 83 (Base). Let X be a set, a base B is a set B ⊆ P(X) such that X =

∪U∈BU and any finite intersection of sets in B can be written as a union of sets in
B.

Proposition 84. Let X and B ⊆ P(X). If τ is the set of all unions of sets in B, then it is a
topology on X. We say that τ is the topology generated by B.

Proof. By assumption, we know that unions of opens are open and finite intersec-
tions of sets in B are open. It remains to show that finite intersections of unions of
sets in B are also open. Let U = ∪i∈IUi and V = ∪j∈JVj with Ui ∈ B and Vj ∈ B,
then by distributivity, we obtain

U ∩V = ∪i∈IUi
⋂
∪j∈JVj =

⋃
i∈I,j∈J

Ui ∩Vj,

so U ∩V is open.51 The lemma then follows by induction. 51 It is a union of opens.

my first category theory textbook 17

In practice, instead of generating a topology from a base B, we start with any
family B0 ⊆ P(X) and let B be its closure under finite intersections, which satisfies
the axioms of a base. Such a B0 is often called a subbase for the topology generated
by B.

Another very useful way to define topological spaces is to consider the topology
induced by a metric.

Definition 85 (Metrics space). A metric space (X, d) is a set X together with a
function d : X×X → R called a metric with the following properties for x, y, z ∈ X:

1. d(x, y) ≥ 0

2. d(x, y) = 0⇔ x = y

3. d(x, y) = d(y, x)

4. d(x, y) ≤ d(x, z) + d(z, y)

Definition 86 (Non-expansive). A function between metric spaces f : (X, dX) →
(Y, dY) is said to be non-expansive52 if for all x, x′ ∈ X, 52 Also called 1–Lipschitz or short.

dY(f (x), f (x′)) ≤ dX(x, x′).

Proposition 87. The composition of any two non-expansive maps is non-expansive.

Definition 88 (Open ball). Let (X, d) be a metric space. Given a point x ∈ X and a
non-negative radius r ∈ [0, ∞), the open ball of radius r centered at x is

Br(x) := {y ∈ X | d(x, y) < r.

Definition 89 (Induced topology). Any metric space (X, d) has an induced topology
generated by the set of all open balls of X.53 53 This topology is sometimes called the open

ball topology.In this topology, a set S ⊆ X is open if and only if every point x ∈ S is contained
in an open ball which is contained in S.54 54 Equivalently, ∀x ∈ S, ∃r > 0, Br(x) ⊆ S.

Definition 90 (Convergence). Let (X, d) be a metric space, a sequence {pn}n∈N ⊆ X
converges to p ∈ X if

∀ε > 0, ∃N ∈N, ∀n ≥ N, d(pn, p) < ε.

Definition 91 (Cauchy sequence). Let (X, d) be a metric space, a sequence {pn}n∈N ⊆
X is called Cauchy if

∀ε > 0, ∃N ∈N, ∀m, n ≥ N =⇒ d(pn, pm) < ε.

Definition 92 (Completeness). A metric space in which every Cauchy sequence
converges is called complete.

1 Categories and Functors
1.1 Categories 19

1.2 Functors 27

1.3 Diagram Paving 34

As you will soon realize, many common mathematical objects can be viewed as
categories or parts of a category, and often in several ways. Hence, there can be
many starting points to motivate category theory even after restricting ourselves to
the background of an undergraduate student in mathematics (see Chapter 0). I do
not want to spend much time in the realm of informal explanations, so we will start
from the notion of directed graphs, quickly get to the definition of a category and
begin an enumeration of examples which will carry on (implicitly) for the rest of the
book. We will also define functors which are to categories what homomorphisms
are to groups (or rings, etc.), and list a bunch of examples.

1.1 Categories

Definition 93 (Directed graph). A directed graph G consists of a collection of nodes
or objects denoted G0 and a collection of arrows or morphisms denoted G1 along
with two maps s, t : G1 → G0, so that each arrow f ∈ G1 has a source s(f) and a
target t(f).

We draw a morphism as an arrow, the source
being its tail and target being its head:

s(f) t(f)
f

Definition 94 (Paths). A path in a directed graph G is a sequence of arrows (f1, . . . , fk)

that are composable in the sense that t(fi) = s(fi−1) for i = 2, . . . , k as drawn below
in (0). The collection of paths of length k in G will be denoted Gk.55 55 The length of a path is the number of arrows

in it. It is fitting that G1 denotes the arrows of
G and the paths of length 1 in G as they are the
same thing.• • • · · · • • •

fk fk−1 f2 f1 (0)

Observe that when referring to a path as (f1, . . . , fk) or drawing it as in (0), there
is a mismatch in the ordering of the arrows. The order as drawn — also called the
diagrammatic order — agrees with the usual notation in graph theory (the branch
of mathematics concerned with studying graphs), and it is arguably a more intuitive
representation of the word “path”. The other order will be motivated when we will
define the composition of arrows in a category. The main idea is that, conceptually,
arrows coincide more closely with functions between mathematical objects, and if
we see the arrows in (0) as functions, their composition is most of the time denoted
by f1 ◦ · · · ◦ fk.

Examples 95. It is very simple to give an example of a directed graph by drawing
a bunch of nodes and arrows between them as in (1), G0 is the collection of nodes,

20 ralph sarkis

G1 is the collection of arrows and s and t can be inferred from looking at the head
and tail of each arrow. Let us give more examples to motivate the next definition.

• • •

• • •

•

(1)

1. For any set X, there is a trivial directed graph with X as its collection of nodes
and no arrows. The source and target maps are the unique functions ∅ → X.
You can represent it by drawing a node for each element of X.56 56 This is a very uninteresting directed graph.

There is a slightly more complex directed graph whose nodes are the elements of
X. For each pair (x, x′) ∈ X × X, we can add an arrow with source x and target
x′. Drawing it is still fairly simple57: you draw a node for each element of X and 57 Provided the set X is finite

an arrow from x to x′ for each pair (x, x′).58 58 Note that there are so-called loops which are
arrows from a node to itself because (x, x) is in
X× X.

2. Starting from a set X, we can define another directed graph by letting X be its
only node and the collection of arrows be the set of functions from X to itself.
The source and target maps are uniquely determined again, this time by their
codomain that contains only the node X. This graph is already more interesting
since the collection of arrows has a monoid structure. Indeed, the operation of
composition of functions is associative, and the identity function is the identity
for this operation.

3. Taking inspiration from the previous examples, we define a directed graph Set.
It contains one node for every set, i.e., Set0 is the collection of all sets, 59 and one 59 Notice how we could not have defined this

graph if we required G0 to be a set.arrow with source X and target Y for every function f : X → Y.

Similarly to the last example, we recognize that the collection of arrows has a
novel kind of structure induced by composition of functions and identity func-
tions. It is not a monoid because you can only compose functions when one’s
source is the target of the other. In other words, composition of functions is not a
binary operation ◦ : Set1 × Set1 → Set1, it is of type Set2 → Set1. Nonetheless,
we still have associativity and identities which are at the core of the definition
of a monoid. Since the theory of monoids is extremely rich and ubiquitous in
mathematics, it is daring to study this seemingly more complex variant. We first
need to make this structure abstract in the definition of a category.

Definition 96 (Category). A directed graph C along with a composition map ◦ :
C2 → C1 is a category if it satisfies the following properties:

1. For any (f , g) ∈ C2, s(f ◦ g) = s(g) and t(f ◦ g) = t(f). This is more naturally
understood visually in (2). • • •g

f ◦g

f
(2)

2. For any (f , g, h) ∈ C3, f ◦ (g ◦ h) = (f ◦ g) ◦ h, namely, composition is associative.
Again, the graphic representation in (3) may be more revealing.

• • • •h g f

f ◦g

(f ◦g)◦h

g◦h

f ◦(g◦h)

(3)
3. For any object A ∈ C0, there exists an identity morphism uC(A) ∈ C1 with A

as its source and target that satisfies uC(A) ◦ f = f and g ◦ uC(A) = g, for any
f , g ∈ C1 where t(f) = A and s(g) = A.

If the third property of Definition 96 is not satis-
fied, C is referred to as a semicategory. In rare
occasions, authors choose to explicit when a cat-
egory does satisfy this property, qualifying it as
unital.

my first category theory textbook 21

Remark 97 (Notation). In general, we will refer to categories with bold uppercase
letters typeset with \mathbf (C, D, E, etc.), their objects with uppercase letters (A,
B, X, Y, Z, etc.) and their morphisms with lowercase letters (f , g, h, etc.). When the
category is clear from the context, we denote the identity morphisms idA instead of
uC(A). We say that two morphisms are parallel if they have the same source and
target. Given morphisms f and g in a category C, we say that f factors through g
if there exists h ∈ C1 such that f = g ◦ h or f = h ◦ g.

Observe that since ◦ is associative, it induces a unique composition map on paths
of any finite lengths, which we abusively denote ◦ : Ck → C1.60 This lets us write 60 Another abuse we make is to define ◦ : C0 →

C1 by X 7→ idX . That is, we identify objects of
C with empty paths (of length 0) starting and
ending at that object, and we consider the com-
position of an empty path to be the identity.

f1 ◦ f2 ◦ · · · ◦ fk with no parentheses. Occasionally, we will refer to the image of the
path under this map as the composition of the path or the morphism that a path
composes to.

• (4)

Examples 98 (Boring examples). It can be really easy to construct a category by
drawing its underlying directed graph and inferring the definition of the compo-
sition from it. Starting from the very simple graph depicted in (4), we can infer
the definition of a category with a single object and its identity morphism. This
category is denoted 1, the composition is trivial since id• ◦ id• = id•.

•1 •2 (5)

Similarly, we construct from the graph in (5) a category with two objects, their
identity morphisms and nothing else. The composition is again trivial. This cat-
egory will be denoted 1 + 1.61 More generally, for any collection C0, there is a

61 This notation is cleared up in Definition 216.
category C whose collection of objects is C0 and whose collection of morphisms is
C1 := {idX | X ∈ C0}. The composition map is completely determined by the third
property in Definition 96.62 A category without non-identity morphisms is called a 62 i.e., for any X ∈ C0, idX ◦ idX = idX .

discrete category.
The graph in (6) corresponds to the category with objects {A, B} and morphisms

{idA, idB, f }.

A B
f

idA idB (6)

The composition map is then completely determined by the properties of identity
morphisms.63 This category is called the interval category or the walking arrow, 63 i.e., f ◦ idA = f , idB ◦ f = f , idA ◦ idA = idA

and idB ◦ idB = idBand it is denoted 2. Note however that 1 + 1 ̸= 2.
Starting now, we will omit the identity morphisms from the diagrams (as is usual

in the literature) for clarity reasons: they would hinder readability without adding
information.

It is not always as straightforward to construct a category from a directed graph.
For instance, if two distinct arrows have the same source and target, they must be
explicitly drawn and the ambiguity in the composition must be dealt with. The
graph in (7) is problematic in this way: it has two distinct paths of length two
starting at the top-left corner and ending at the bottom-right corner. Since the com-
position of these paths can be equal to any of the two distinct morphisms between
these corners, there is no category obviously corresponding to this graph.

• •

• •
(7)

Since categories can be quite huge, it is rare that we draw all of a category at

22 ralph sarkis

once. We will often draw diagrams with (labelled) nodes and arrows to represent
the objects and morphisms within a category that we are focusing on. We also omit
from our diagrams morphisms that can be inferred from the categorical structure.
For instance, if we draw two composable morphisms as in (8), we do not draw the
identity morphisms nor the composition g ◦ f .

A B C
f g

(8)

In many cases, not drawing all morphisms can lead to ambiguities like for (7).
We have to be careful to avoid these, but sometimes we can resolve the problem by
stating that the diagram is commutative.

Definition 99 (Commutativity). Given a diagram representing objects and mor-
phisms in a category, we say that it is commutative if the composition of any path
of length greater than one is equal to the composition of any other path with the
same source and target. The morphism resulting from the composition may or may
not be depicted.

Examples 100. Arguably the most frequently used commutative diagram is the
commutative square drawn in (9).

• •

• •
(9)

We say the square commutes when the bottom and top paths compose to the same
(omitted in the diagram) morphism. The commutative square can also be seen as a
category by inferring the missing morphism and the composition from commuta-
tivity. We can denote it 2× 2.64 64 This notation is explained in Definition 132.

• • •

• • •
h

f ′

f g

g′

h′′h′ (10)

Assuming that (10) commutes, we can infer that f ′ ◦ h = h′ ◦ f , g′ ◦ h′ = h′′ ◦ g,
and g′ ◦ f ′ ◦ h = h′′ ◦ g ◦ f . Observe that the last equation can be derived from
the first two which are equivalent to the commutativity of the two squares in (10).
More generally, combining commutative diagrams in this way yields commutative
diagrams, and this is the core of a powerful proof method called diagram paving
that we introduce at the end of this chapter. A B

f

g
(11)

Stating that (11) commutes is equivalent to stating that f ◦ g ◦ f = f and g ◦ f ◦
g = g. We can also infer that f ◦ g ◦ f ◦ g = f ◦ g and g ◦ f ◦ g ◦ f = g ◦ f , but this
follows from the first two equality.

It would be odd to require that (7) commutes. It would imply that the two
parallel morphisms are equal because they are both equal to the composition of
the bottom and top paths. We will never draw parallel morphisms when they are
supposed to be equal.

To assert that two morphisms f , g : A→ B are equal using a diagram, we can say
that either of the following is commutative, with a preference for the third one.65 65 The equal sign in the third one can be read as

idA going in either direction.

A A A

A B A B A B

f

g

idA

g

f

g

f
idA (12)

my first category theory textbook 23

Remark 101 (Convention). Reasoning with commutative diagrams is an acquired
skill we will practice quite a lot in the following chapters. Yet there is no standard
definition that everyone systematically uses.66 For this reason, I decided to pick my 66 This does not really lead to many misunder-

standings anyway because what is meant by a
diagram is usually made clear by the context.

favorite definition of commutativity which is uncommon.67 In most cases, a dia-

67 I have not seen the constraint on the length
anywhere else.

gram is called commutative when any two paths compose to the same morphism,
but in practice, there are two exceptions handled by Definition 99:

1. Two parallel morphisms are not always equal in a commutative diagram. In fact,
when parallel morphisms are drawn, it is usually to emphasize that they are
distinct.

2. Unless otherwise stated, an endomorphism68 drawn in a commutative diagram 68 An endomorphism is a morphism whose
source and target coincide.is not equal to the identity morphism (the composition of the empty path).

Warning 102. Diagrams are not commutative by default. We will always specify
when a diagram commutes. As our usage of commutative diagrams ramps up in
the following chapters, you have to try to remember that.

Before moving on to more interesting categories, we introduce the Hom notation.

Definition 103 (Hom). Let C be a category and A, B ∈ C0 be objects, the collection
of all morphisms going from A to B is

HomC(A, B) := { f ∈ C1 | s(f) = A and t(f) = B}.

This leads to an alternative way of defining the morphisms of C, namely, one can
describe HomC(A, B) for all A, B ∈ C0 instead of describing C1 all at once. Defining
the morphisms this way also takes care of the source and target functions implicitly.

Remark 104 (Notation). Some authors choose to denote the collection of morphisms
between A and B with C(A, B). I prefer to use the latter notation when working
with 2–categories69 to highlight the fact that C(A, B) has more structure. Other 69 see Definition 370.

authors use hom with a lowercase “h”, my choice here is arbitrary.

Definition 105 (Smallness). A category C is called small if the collections of objects
and morphisms are sets. If for all objects A, B ∈ C0, HomC(A, B) is a set, C is said
to be locally small and HomC(A, B) is called a hom-set. A category that is not
small can be referred to as large.

The following three examples will follow us throughout the book.

Example 106 (Set). The category Set has the collection of sets as its objects and for
any sets X and Y, HomSet(X, Y) is the set of all the functions from X to Y.70 The 70 We already saw this directed graph in Exam-

ple 95.3.composition map is given by composition of functions (which is associative) and
the identity maps serve as the identity morphisms. This category is locally small
but not small.71 71 By our argument at the start of Chapter 0: the

collection of all sets cannot be a set.We will carry out many examples using Set because it is elaborate enough to
be interesting, yet it is easy to understand because we are (assumed to be) very
familiar with sets and functions.

24 ralph sarkis

Example 107. Let (X,≤) be a partially ordered set, it can be viewed as a category
with elements of X as its objects. For any x, y ∈ X, the hom-set HomX(x, y) contains
a single morphism if x ≤ y and is empty otherwise. The identity morphisms arise
from the reflexivity of ≤. Since every hom-set contains at most one element and ≤
is transitive, the composition map is completely determined. Detailing this out, if
f : x → y and g : y → z are morphisms, then we know that x ≤ y and y ≤ z. Thus,
transitivity implies that x ≤ z and there is a unique morphism x → z, so it must be
g ◦ f .72 72 Note that antisymmetry was not used in this

argument, so one can more generally construct
a category starting from a preorder. Such cate-
gories are called thin because each hom-set con-
tains at most one morphism. It is straightfor-
ward to show the identities and composition
ensure that any thin category C is constructed
from the preorder (C0,≤) with

X ≤ Y ⇔ HomC(X, Y) ̸= ∅.

If a category corresponds to this construction for some poset, it is called posetal.
In (13), we depict the posetal category associated to (N,≤). The arrows between
numbers n and n + k are omitted for k > 1 as they can be inferred by the composi-
tion n ≤ n + 1 ≤ n + 2 ≤ · · · ≤ n + k.

0• 1• 2• · · · (13)

As a particular case of posetal categories, let (X, τ) be a topological space and
note that the inclusion relation on open sets is a partial order on τ. Thus, X has a
corresponding posetal category. More explicitly, the objects are open sets and for
any U, V ∈ τ, the hom-set HomX(U, V) contains the inclusion map iUV if U ⊆ V
and is empty otherwise. This category will be denoted O(X, τ) or O(X).

We will carry out many examples using posetal categories because it avoids dif-
ficulties arising from having different parallel morphisms.73 In particular, every 73 For the same reason, thin categories are also

simple cases to carry out examples with.diagram drawn with objects and morphisms from a posetal category is commuta-
tive because the composition of any path is equal to the unique morphism between
the source and target of that path. This also means some important aspects of a
concept can be trivial when instantiating it for a posetal category.

Example 108 (Single object categories). If a category C has a single object ∗, then
all morphisms go from ∗ to ∗. In particular, C1 = HomC(∗, ∗) and C2 = C1 × C1.
Then, the associativity of ◦ and existence of id∗ make (C1, ◦) into a monoid.

Conversely, a monoid (M, ·) can be represented by a single object category M,
where HomM(∗, ∗) = M and the composition map is the monoid operation.

Since many algebraic structures have an associative operation with an identity
element, this yields a fairly general construction. The single object category as-
sociated to a monoid or group G will be denoted by BG and referred to as the
delooping of G.

∗

1

(1 2)

(2 3)
(1 3)

(1 2 3)
(1 3 2)

Figure 1.1: The delooping of the sym-
metric group S3, a.k.a. BS3.

The natural numbers can also be endowed with the monoid structure of addition,
hence a particular instance of a single object category is the delooping of (N,+).
Notice that this category is very different from the posetal category (N,≤). In
the former, N is in correspondence with the morphisms while in the latter, it is in
correspondence with the objects.

We will carry out many examples using deloopings of monoids or groups be-
cause it avoids difficulties arising from having two different objects.

Several simple examples of large categories arise as subcategories of Set.

my first category theory textbook 25

Definition 109 (Subcategory). Let C be a category, a category C′ is a subcategory
of C if, the following properties are satisfied.

1. The objects and morphisms of C′ are objects and morphisms of C (i.e., C′0 ⊆ C0

and C′1 ⊆ C1).

2. The source and target maps of C′ are the restrictions of the source and target
maps of C on C′1 and for every morphism f ∈ C′1, s(f), t(f) ∈ C′0.

3. The composition map of C′ is the restriction of the composition map of C on C′2
and for any (f , g) ∈ C′2, f ◦C′ g = f ◦C g ∈ C′1.

4. The identity morphisms of objects in C′0 are the identity morphisms of objects in
C0, i.e., uC(A) = uC′(A) when A ∈ C′0.

Intuitively, one can see C′ as being obtained from C by removing some objects and
morphisms, but making sure that no morphism is left with no source or no target
and that no path is left without its composition.

SOL Exercise 110 (NOW!). Find an example of a category C and a category C′ that
satisfy the first three conditions but not the fourth.

Definition 111 (Full and wide). A subcategory C′ of C is called full if for any
objects A, B ∈ C′0, HomC′(A, B) = HomC(A, B). It is called wide if C′0 = C0.74

74 In words, a subcategory is full if the mor-
phisms that were removed had their source or
target removed as well, and it is wide if no ob-
jects were removed.

Examples 112 (Subcategories of Set). We can selectively remove some objects and
morphisms in Set to obtain the following categories.

1. Since the composition of injective functions is again injective, the restriction of
morphisms in Set to injective functions yields a wide subcategory of Set, de-
noted by SetInj. Unsurprisingly, SetSurj can be constructed similarly.

2. Removing all infinite sets from Set yields the full subcategory of finite sets de-
noted FinSet.75 75 This category is not small because there is no

set of all finite sets.

3. Further removing sets from FinSet and keeping only ∅, {1}, {1, 2}, {1, 2, 3}, etc.,
we obtain the category FinOrd which is a small full subcategory of Set.76 76 The name FinOrd is an abbreviation of finite

ordinals, because we can also define FinOrd as
the category of finite ordinals and functions be-
tween them.

4. Since the composition of monotone maps is monotone and the identity function
is monotone, we can view each set {1, . . . , n} as ordered with ≤ and remove all
morphisms that are not monotone from FinOrd. The resulting category is called
the simplex category and denoted by ∆.

Examples 113 (Concrete categories). This second list of examples contains so-called
concrete categories. Informally, they are categories of sets with extra structure,
where morphisms are functions that preserve that extra structure.77 77 Formally, see Definition 127.

1. The category Set∗ is the category of pointed sets. Its objects are sets with a
distinguished element, and its morphisms are functions that map distinguished
elements to distinguished elements. The distinguished element of a pointed set

https://math.stackexchange.com/questions/896270/collection-of-all-finite-sets
https://en.wikipedia.org/wiki/Ordinal_number

26 ralph sarkis

is the extra structure on top of the set, and morphisms between pointed set must
preserve that structure. In more details, (Set∗)0 is the collection of pairs (X, x)
where X is a set and x ∈ X, and for any two pointed sets (X, x) and (Y, y),

HomSet∗((X, x), (Y, y)) = { f : X → Y | f (x) = y} .

The identity morphisms and composition are defined as in Set, so the axioms of
a category clearly hold after checking that if f : (X, x)→ (Y, y) satisfies f (x) = y
and g : (Y, y)→ (Z, z) satisfies g(y) = z, then (g ◦ f)(x) = z.

2. The category Mon is the category of monoids and their homomorphisms, let
us be more explicit.78 The objects are monoids, so Mon0 is the collection of all 78 These technicalities are essentially the same

for the categories in the remainder of Example
113.

monoids, and the morphisms are monoid homomorphisms, so for any M, N ∈
Mon0, HomMon(M, N) is the set of homomorphisms from M to N. The com-

position in Mon is given by the composition of homomorphisms, we know it
is well-defined because the composition of two homomorphisms is a homomor-
phism. Also, the composition is associative and the identity functions are homo-
morphisms, so we can define uMon(M) = idM.

3. Similarly, the category of groups (resp. rings or fields) where the morphisms are
group (resp. ring or field) homomorphisms is Grp (resp. Ring or Field). The
category of abelian groups (resp. commutative monoids or rings) is a full subcat-
egory of Grp (resp. Mon or Ring) denoted by Ab (resp. CMon or CRing).79 79 Defining a category by saying it is a full sub-

category of another one is a compact way of
saying that we remove all the objects we do not
want (e.g., the non-abelian groups) and nothing
else.

4. Let k be a fixed field, the category of vector spaces over k where the morphisms
are linear maps is Vectk. The full subcategory of Vectk consisting only of finite
dimensional vector spaces is FDVectk.

5. The category of partially ordered sets where morphisms are order-preserving
functions is denoted by Poset. It is a full subcategory of Pre, the category of
preorders.

A poset is a set A equipped with a binary relation≤ ⊆ A×A (the extra structure)
that satisfies some axioms (reflexivity, transitivity and antisymmetry). In some
sense, we can see the axioms as structure on top of the extra structure that is ≤.
For example, we can consider the category 2Rel of sets equipped with a binary
relation (we do not require the axioms of posets to hold). An object of 2Rel is
a pair (A, R) where A is a set and R ⊆ A × A is a binary relation on A.80 A 80 We use a nondescript letter for the relation in-

stead of a symbol like ≤ to avoid being misled
by the intuitions we have for partial orders.

morphism (A, RA) → (B, RB) is defined like order-preserving functions: it is a
function f : A→ B satisfying ∀x, y ∈ A, (x, y) ∈ RA =⇒ (f (x), f (y)) ∈ RB.

The categories Poset and Pre are both full subcategories of 2Rel where we only
keep the relations satisfying the appropriate axioms.

6. The category of topological spaces where morphisms are continuous functions is
denoted by Top.

7. The category of metric spaces where morphisms are nonexpansive functions is
denoted by Met.

In these last two examples, the choice of mor-
phisms to take between spaces is not as clear
cut as for the previous examples. For instance,
one could ask the morphism between metric
spaces to be continuous also, or for morphisms
between topological spaces to map open sets to
open sets (those are called open maps). In the
end, the choice made depends on the context
where the category is used.

https://en.wikipedia.org/wiki/Open_and_closed_maps

my first category theory textbook 27

SOL Exercise 114. An n–ary relation on a set A is a subset of An. Define the category
nRel.

Our next example is a large category that is neither a subcategory of Set nor a
concrete category.

Example 115 (Rel). The category of sets and relations, denoted by Rel,81 has as
81 The notations for Rel and nRel look close, but
these categories see relations from very different
points of view.

objects the collection of all sets, and for any sets X and Y, HomRel(X, Y) is the set
of relations between X and Y, that is, the powerset of X × Y. The composition of
two relations R ⊆ X×Y and S ⊆ Y× Z is defined by If you are not familiar with composition of re-

lations, try to understand it visually. Draw the
sets X, Y and Z as regions with dots inside, the
relation R as wires connecting some dots in X
and Y, and the relation S as wires connecting
some dots in Y and Z. The relation R ; S relates
a dot x ∈ X to a dot z ∈ Z if you can follow a
wire in R and a wire in S to go from x to z.

Examples can also be helpful. Let X = Y =
Z be the set of all humans, R be the “cousin”
relation (i.e., (x, y) ∈ R whenever x and y are
cousins) and S be the “sibling” relation. You
can verify that R; S = R, S; S = S, but R; R ̸= R.

S ◦ R = R ; S := {(x, z) ∈ X× Z | ∃y ∈ Y, (x, y) ∈ R, (y, z) ∈ S} ⊆ X× Z.

One can check that this composition is associative and that, for any set X, the
diagonal relation ∆X = {(x, x) : x ∈ X} ⊆ X×X is the identity with respect to this
composition.

Remark 116. You can view Set as a wide subcategory of Rel where you only take
the relations R ⊆ X×Y satisfying for any x ∈ X,

| {y ∈ Y | (x, y) ∈ R} | = 1.

1.2 Functors

The list above is far from exhaustive; there are many more mathematical objects
that can fit in a category and this is a main reason for studying this subject. Indeed,
categories encapsulate a natural structure that accurately represents the heart of
several mathematical theories from a global and abstract perspective.

If we were to develop category theory by mirroring the curriculum of most text-
books introducing abstract algebra, the rest of this chapter would be dedicated to
exploring the insides of a category. We could talk about monomorphisms, epi-
morphisms, initial and terminal objects, subobjects, and even (co)limits inside a
category. All these words will be defined in due time,82 but not before explaining 82 Without relying on the rest of this chapter.

a guiding principle in category theory and setting an example by following it.
If we spend some more time studying Definition 96, we realize that the objects

of a category carry little to no structure, and they are way less important than the
morphisms. For example, the categories Set, SetInj, SetSurj, and Rel all have
the same collection of objects, but they are very dissimilar.83 As a matter of fact, 83 We do not have enough tools yet to formally

point out their differences.there are alternative (albeit more messy) definitions of categories that do not refer
to objects.

Furthermore, a category only has superficial information about what its objects
and morphisms are. For example, the category Grp is only a bunch of nodes and
arrows, identities and a composition map. We cannot recover the definition of
a group or a group homomorphism from that information. At first, this might
seem detrimental: how can we prove things about groups if we do not know what
they are? A good chunk of category theorists’ mindset is contained in this snarky
response.

28 ralph sarkis

We do not need to know what they are, only how they interact with each other.

As we advance through this book, we will get more sense of how true and powerful
this idea can be.84 We quickly start this journey by defining functors which are how 84 One could argue the culminating point of this

book (and any introduction to category theory)
is the Yoneda lemma (see Chapter 6) which
beautifully formalizes this idea.

categories interact with each other.
Informally, a functor is a morphism of categories. Thus, to motivate the def-

inition, we can look at other morphisms we have encountered. A clear similarity
between categories like Mon, Grp, Ring or Poset is that all the objects are sets with
some sort of structure that the morphisms preserve. In the first three categories, the
structure on an object is the operations and identity elements that are preserved
under homomorphisms, and in the last one, the structure on a poset is a relation
that is preserved by order-preserving maps.85 Hence, we go back to Definition 96, 85 Not all morphisms are functions that preserve

structure, see e.g. morphisms in posetal cate-
gories.

and we see that the structure of a category consists of the source and target maps,
the composition map and the identities.

Definition 117 (Functor). Let C and D be categories, a functor F : C ⇝ D is
a pair of maps F0 : C0 → D0 and F1 : C1 → D1 such that diagrams (14), (15)
and (16) commute where F2 is induced by the definition of F1 with F2 = (f , g) 7→
(F1(f), F1(g)).86 86 It is the first time we use commutative dia-

grams and we are already cheating a bit. In-
deed, these diagrams do not represent objects
and morphisms of a category we know. They
could live in the category Set if C and D were
small, but in the general case, we would need
a category of collections and functions. It does
not exist because there is no collection of all col-
lections. Fortunately, this does not impact how
we read these commutative diagrams.

C0 C1 C0

D0 D1 D0

F0 F1

s t

F0

s t

(14)

C2 D2

C1 D1

◦C

F2

◦D

F1

(15)
C0 D0

C1 D1

uC

F0

uD

F1

(16)

Remark 118 (Digesting diagrams). Once again, we emphasize that commutative di-
agrams will be heavily employed to make clearer and more compact arguments,87 87 This is especially true when using a black-

board or pen and paper because it makes it eas-
ier to point at things. Sadly, I cannot point at
things on this PDF you are reading.

and that it will take time to get used to them. For now, let us unpack the definition
above to ease its comprehension.

Commutativity of these diagrams is equivalent to having the following equalities:

s ◦ F1 = F0 ◦ s t ◦ F1 = F0 ◦ t F1 ◦ ◦C = ◦D ◦ F2 F1 ◦ uC = uD ◦ F0

Unrolling further, a functor F : C⇝ D88 must satisfy the following properties. 88 The⇝ (\rightsquigarrow) notation for func-
tors is not that common, they are usually de-
noted with plain arrows because they are mor-
phisms. Nonetheless, I feel it is useful to have
a special treatment for functors until you get ac-
customed to them. The squiggly arrow notation
is sometimes used for Kleisli morphisms which
we cover in Chapter 8.

i. For any A, B ∈ C0 and f ∈ HomC(A, B), F(f) ∈ HomD(F(A), F(B)). This is
equivalent to the commutativity of (14) which says F0(s(f)) = s(F1(f)) and
F0(t(f)) = t(F1(f)).

ii. If f , g ∈ C1 are composable, then F(f) and F(g) are composable by i and
F(f ◦C g) = F(f) ◦D F(g) by commutativity of (15).

iii. If A ∈ C0, then uD(F(A)) = F(uC(A)) by commutativity of (16).89 89 Alternatively, idF(A) = F(idA).

my first category theory textbook 29

The subscript on F is often omitted, as is common in the literature, when it is clear
whether F is applied to an object or a morphism. We will also denote application
of F with juxtaposition instead of parentheses, i.e., we can write FA and F f instead
of F(A) and F(f).

Examples 119 (Boring examples). As usual, a few trivial constructions arise.

1. For any category C, the identity functor idC : C⇝ C is defined by letting (idC)0

and (idC)1 be identity maps on C0 and C1 respectively. When the source and target of a functor coin-
cide, we may refer to it as an endofunctor.

2. Let C be a category and C′ a subcategory of C, the inclusion functor I : C′ ⇝ C
is defined by letting I0 be the inclusion map C′0 ↪→ C0 and I1 be the inclusion
map C′1 ↪→ C1.

3. Let C and D be categories and X be an object in D, the constant functor ∆(X) :
C ⇝ D sends every object to X and every morphism to idX , i.e., ∆(X)0(A) = X
for any A ∈ C0 and ∆(X)1(f) = idX for any f ∈ C1.

Examples 120 (Less boring). Functors with the source being one of 1, 2 or 2× 290 90 2× 2 is the commutative square in (9)

are a bit less boring. Let the target be a category C and let us analyze these functors.

- Let F : 1⇝ C, F0 assigns to the single object • ∈ 10 an object F(•) ∈ C0. Then, by
commutativity of (16), F1 is completely determined by id• 7→ idF(•). We conclude
that functors of this type are in correspondence with objects of C.

- Let F : 2 ⇝ C, F0 assigns to A and B, two objects FA, FB ∈ C0 and F1’s action
on identities is fixed. Still, there is one choice to make for F1(f) which must be
a morphism in HomC(FA, FB). Therefore, F sums up to a choice of two objects
in C and a morphism between them. In other words, functors of this type are in
correspondence with morphisms in C.91 91 After picking a morphism, the source and tar-

get are determined.
- Similarly (we leave the details as an exercise), functors of type F : 2× 2⇝ C are

in correspondence with commutative squares inside the category C.92 92 i.e., pairs of pairs of composable morphisms
((f , g), (f ′, g′)) ∈ C2 ×C2 satisfying f ◦ g = f ′ ◦
g′.Remark 121 (Functoriality). We will use the term functorial as an adjective to qualify

transformations that behave like functors and functoriality to refer to the property
of behaving like a functor.

Throughout the rest of this book, the goal will essentially be to grow our list of
categories and functors with more and more examples and perhaps exploit their
properties wisely. Before pursuing this objective, we give important definitions
analogous to injectivity and surjectivity of functions.

Definition 122 (Full and faithful). Let F : C ⇝ D be a functor. For A, B ∈ C0,
denote the restriction of F1 to HomC(A, B) with

FA,B : HomC(A, B)→ HomD(F(A), F(B)).

- If FA,B is injective for any A, B ∈ C0, then F is faithful.

- If FA,B is surjective for any A, B ∈ C0, then F is full.

30 ralph sarkis

- If FA,B is bijective for any A, B ∈ C0, then F is fully faithful.

SOL Exercise 123 (NOW!). Show that the inclusion functor I : C′ ⇝ C is faithful. Show
it is full if and only if C′ is a full subcategory.

SOL Exercise 124. Let F : C⇝ D and G : D⇝ E. Show that

- if G ◦ F is faithful, then F is faithful, and

- if G ◦ F is full, then G is full.

As a generalization of the previous exercise, we note that a functor is full if and
only if its image is a full subcategory of the target category.93 93 The image of a functor F : C ⇝ D is the sub-

category of D containing all objects and mor-
phisms in the image of F0 and F1.Remark 125. While bijectivity is very strong to compare sets — it morally says that

the elements of one set can be identified with the elements of another set — fully
faithful functors are not as powerful. For instance, all functors between thin cate-
gories are fully faithful (because all the hom-sets are singletons). It should not be
surprising that some fully faithful functors can be between two wildly unrelated
categories because this property does not restrict the action on objects. We will
see later what properties ensure that a functor strongly links the source and target
category.

Examples 126. For all but the first example, we leave you to prove functoriality.94 94 It is an elementary task that is mostly relevant
to the field of mathematics the functor comes
from.

In the literature, a lot of functors are given only with their action on objects and the
reader is supposed to figure out the action on morphisms. Not everyone has the
same innate ability to do this, but I hope this book can give you enough experience
to overcome this difficulty.

1. The powerset functor P : Set⇝ Set sends a set X to its powerset P(X)95 and a 95 The powerset of X is the set of all subsets of
X.function f : X → Y to the image map P(f) : P(X) → P(Y). The latter sends a

subset S ⊆ X to
P(f)(S) = f (S) := { f (s) | s ∈ S} ⊆ Y.

In order to prove that P is a functor, we need to show it makes diagrams (14),
(15), and (16) commute. Equivalently, we can show it satisfies the three conditions
in Remark 118.

i. For any function f : X → Y, the source and target of the image map P f are
PX and PY respectively as required.

ii. Given two functions f : X → Y and g : Y → Z, we can verify that Pg ◦ P f =

P(g ◦ f) by looking at the action of both sides on a subset S ⊆ X.

Pg(P f (S)) = {g(y) | y ∈ P f (S)} P(g ◦ f)(S) = {(g ◦ f)(x) | x ∈ S}
= {g(y) | y ∈ { f (x) | x ∈ S}} = {g(f (x)) | x ∈ S}
= {g(f (x)) | x ∈ S}

iii. Finally, the image map of idX is the identity on PX because

P idX(S) = {idX(x) | x ∈ S} = {x | x ∈ S} = S.

my first category theory textbook 31

The powerset functor is faithful because the same image map cannot arise from
two different functions96, it is not full because lots of functions P(X) → P(Y) 96 Indeed, if f (x) ̸= g(x), then f ({x}) ̸= g({x}).
are not image maps. A cardinality argument suffices: when |X|, |Y| ≥ 2,

|HomSet(X, Y)| = |Y||X| < |P(Y)||P(X)| = |HomSet(P(X),P(Y))|.

2. The concrete categories of Examples 113 are defined using a functor.

Definition 127 (Concrete category). We call a category C concrete if it is paired
(generally implicitly) with a faithful functor U : C ⇝ Set. In most cases, U is
called the forgetful functor because it sends objects and morphisms of C to sets
and functions by forgetting additional structure.

The forgetful functor U : Grp ⇝ Set sends a group (G, ·, 1G) to its underlying
set G, forgetting about the operation and identity. It sends a group homomorphism
f : G → H to the underlying function, forgetting about the homomorphism properties.
It is faithful since if two homomorphisms have the same underlying function,
then they are equal.97 97 We leave you the repetitive task to describe the

forgetful functor for every concrete category in
Examples 113.Briefly, functoriality of U follows from the facts that the underlying function of

a homomorphism f : G → H goes between the underlying sets of G and H, the
underlying function of a composition of homomorphisms is the composition of
the underlying functions, and the underlying function of the identity homomor-
phism is the identity map.

3. It is also sometimes useful to consider intermediate forgetful functors. For exam-
ple, U : Ring⇝ Ab sends a ring (R,+, ·, 1R, 0R) to the abelian group (R,+, 0R),
forgetting about multiplication and 1R. It sends a ring homomorphism f : R → S
to the same underlying function seen as a group homomorphism.98 Not any old 98 It can do that because part of the requirements

for ring homomorphisms is to preserve the un-
derlying additive group structure.

functor Ring⇝ Ab can be considered an intermediate forgetful functor. The key
property is that forgetting about multiplication and 1R (Ring ⇝ Ab) and then
forgetting about the addition and 0R (Ab⇝ Set) is the same thing as forgetting
all the ring structure at once (Ring⇝ Set).

The inclusion functor of Poset into 2Rel is also an intermediate forgetful functor.
It forgets about all the properties of the partial order, but it does not forget about
the binary relation.

4. In some cases, there is a canonical way to go in the opposite direction to the
forgetful functor, it is called the free functor. For Mon, the free functor F :
Set ⇝ Mon sends a set X to the free monoid generated by X and a function

f : X → Y to the unique group homomorphism F(X) → F(Y) that restricts to f
on the set of generators.99 99 More details about free monoids are in Chap-

ter 4.
In Chapter 7, when covering adjunctions, we will study a strong relation be-
tween the forgetful functor U and the free functor F that will generalize to other
mathematical structures.

32 ralph sarkis

5. Let (X,≤) and (Y,⊑) be posets, and F : X ⇝ Y be a functor between their
posetal categories. For any a, b ∈ X, if a ≤ b, then HomX(a, b) contains a single
element, thus HomY(F(a), F(b)) must contain a morphism as well,100 or equiv- 100 The image of the element in HomX(a, b) un-

der F.alently F(a) ⊑ F(b). This shows that F0 is an order-preserving function on the
posets.

Conversely, any order-preserving function between X and Y will correspond to
a unique functor as there is only one morphism in all the hom-sets.101 101 Given f : (X,≤) → (Y,⊑) order-preserving,

the corresponding functor between the posetal
categories of X and Y acts like f of the objects
and sends a morphism a → b to the unique
morphism f (a) → f (b) which exists because
a ≤ b =⇒ f (a) ⊑ f (b).

SOL Exercise 128. Let A and B be two sets, their powersets can be seen as posets with
the order ⊆. Thus, we can view P(A) and P(B) as posetal categories.

- Draw (using points and arrows) the category corresponding to P({0, 1, 2}).

- Show that the image and preimage functions defined below are functors be-
tween these categories.102 102 i.e., they are order-preserving functions.

f : P(A)→ P(B) = S 7→ { f (a) | a ∈ S}
f−1 : P(B)→ P(A) = S 7→ {a ∈ A | f (a) ∈ S}

6. Let G and H be groups and BG and BH be their respective deloopings, then the
functors F : BG ⇝ BH are exactly the group homomorphisms from G to H.103 103 Similarly for the deloopings of monoids.

Let F : BG ⇝ BH be a functor, the action of F on objects is trivial since there
is only one object in both categories. On morphisms, F1 is a function from G
to H which preserves composition and the identity morphism which, by defini-
tion, are the group multiplication and identity respectively. Thus, F1 is a group
homomorphism.

Given a homomorphism f : G → H, the reverse reasoning shows we obtain a
functor BG⇝ BH by acting trivially on objects and with f on morphisms.

7. For any group G, the functors F : BG ⇝ Set are in correspondence with left
actions of G. Indeed, if S = F(∗), then

F1 : G = HomBG(∗, ∗)→ HomSet(S, S)

is such that F(gh) = F(g) ◦ F(h) for any g, h ∈ G and F(1G) = idS.104 Moreover, 104 This is because gh is the composite of g and h
in BG and 1G is the identity morphism in BG.since for any g ∈ G,

F(g−1) ◦ F(g) = F(g−1g) = F(1G) = idS = F(1G) = F(gg−1) = F(g) ◦ F(g−1),

the function F(g) is a bijection (its inverse is F(g−1)) and we conclude F1 is the
permutation representation of the group action defined by g ⋆ s = F(g)(s) for all
g ∈ G and s ∈ S.

Given a group action on a set S, we leave you to show that letting F0 = ∗ 7→ S and
F1 be the permutation representation of the action yields a functor F : BG⇝ Set.

8. In the previous example, replacing Set with Vectk, one obtains k-linear represen-
tations of G instead of actions of G.105 105 You might not know about linear representa-

tions, we just mention them in passing.

my first category theory textbook 33

Remark 129 (Non-examples). From this long (and yet hardly exhaustive) list, one
might get the feeling that every important mathematical transformation is a functor.
This is not the case, so I wanted to show where functoriality can fail and hopefully
give you a bit of intuition about why they fail. Here are two instances showcasing
the two most common ways (in my experience) you can decide that a mapping is
not functorial.

Let us define F : FDVectk ⇝ Set which assigns to any vector space over k a
choice of basis. There is no non-trivializing way to define an action of F on linear
maps which make F into a functor. One informal reason for this failure is that we
cannot choose bases globally, so F is defined locally and its parts cannot be glued
together.106 106 If you feel like you are making a non-

canonical choice for every object, there is a good
chance you are not dealing with a functor.

Another non-example is given by the center107 of a group in Grp. A homomor-

107 The center of a group G, often denoted Z(G),
is the subset of G containing elements that com-
mute with all other elements, i.e.,

Z(G) = {x ∈ G | ∀g ∈ G, xg = gx}.

phism H → G does not necessarily send the center of H in the center of G (take
for instance S2 ↪→ S3), thus, we cannot easily define the function Z(H) → Z(G)

induced by the homomorphism (unless we send everything to 1G ∈ Z(G)). This
time, Z is not a functor because it does not interact well with the morphisms of the
category. Actually, if you decided to only keep group isomorphisms in the cate-
gory, you could define the functor Z because isomorphisms preserve the center of
groups.

In this chapter, we introduced a novel structure, namely categories, that functors
preserve.108 Since we also introduced several categories where objects had some 108 We defined functors precisely so that they

preserve the structure of categories.structure that morphisms preserve, it is reasonable to wonder whether categories
and functors are also part of a category. In fact, the only missing ingredient is
the composition of functors (we already know what the source and target of a
functor is and every category has an identity functor). After proving the following
proposition, we end up with the category Cat where objects are small categories
and morphisms are functors.109 109 In order to avoid paradoxes of the Russel

kind, it is essential to restrict Cat to contain only
small categories.

Proposition 130. Let F : C ⇝ D and G : D ⇝ E be functors and G ◦ F : C ⇝ E be
their composition defined by G0 ◦ F0 on objects and G1 ◦ F1 on morphisms. Then, G ◦ F is
a functor.

Proof. One could proceed with a really hands-on proof and show that G ◦ F satisfies
the three necessary properties in a manner not unlike when proving the group
homomorphisms compose. This should not be too hard, but you will have to deal
with notation for objects, morphisms and the composition from all three different
categories. This can easily lead to confusion or worse: boredom!

Instead, we will use the diagrams we introduced in the first definition of a func-
tor. From the functoriality of F and G, we get two sets of three diagrams and
combining them yields the diagrams for G ◦ F.110 110 Since F is a functor, the top two squares of

(17) and the left squares of (18) and (19) com-
mute. Since G is a functor, the bottom two
squares (17) and the right squares of (18) and
(19) commute.

34 ralph sarkis

C0 C1 C0

D0 D1 D0

E0 E1 E0

F0 F1

ts

F0

G0 G1

ts

G0

ts

(17)

C2 D2 E2

C1 D1 E1

F2

◦C

G2

◦D ◦E

F1 G1

(18)
C0 D0 E0

C1 D1 E1

F0

uC

G0

uD uE

F1 G1

(19)

To finish the proof, you need to convince yourself that combining commutative
diagrams in this way yields commutative diagrams. We proceed with a proof by
example. Take diagram (19), we know the left and right square are commutative
because F and G are functors. To show that the rectangle also commutes, we need
to show the top path and bottom path from C0 to E1 compose to the same function.
Here is the derivation:111 111 In this case, both the diagram and the deriva-

tion are fairly simple. This will not stay true in
the rest of the book, but the complexity of dia-
grams will grow way slower than the complex-
ity of derivations, and we will mostly omit the
latter for this reason.

G1 ◦ F1 ◦ uC = G1 ◦ uD ◦ F0 left square commutes

= uE ◦ G0 ◦ F0 right square commutes

The category Cat is a concrete category. Intuitively, it is because categories are
sets with extra sturcture that functors preserve. Rigorously, there is a forgetful
functor Cat⇝ Set.

SOL Exercise 131 (NOW!). Show that both assignments C 7→ C0 and C 7→ C1 yield func-
tors Cat⇝ Set.112 Their action on morphism of categories (functors) is straightfor- 112 Recall that we assumed C ∈ Cat is small,

meaning both C0 and C1 are sets.ward: the first sends F to F0 and the second sends F to F1. Show that the functor
(−)0 is not faithful, but (−)1 is. We will often use − as a placeholder for an in-

put so the latter remains nameless. For instance,
f (−,−) means f takes two inputs. The type of
the inputs and outputs will be made clear in the
context.

This last exercise suggests we should view a category as a set of morphisms
with extra structure. However, Definition 96 reveals we can also see a category as
a directed graph with extra structure. We can make this formal by first defining
the category DGph whose objects are small directed graphs and morphisms are
functors without the requirement of (15) and (16).113 There is a functor Cat ⇝ 113 Explicitly, a morphism G → G′ is a pair of

functions F0 : G0 → G′0 and F1 : G1 → G′1
satisfying for any f ∈ G1, F0(s(f)) = s(F1(f))
and F0(t(f)) = t(F1(f)). Less cryptically, it is a
mapping from objects to objects and arrows to
arrows such that an arrow A → B is mapped to
an arrow F0 A→ F0B.

DGph that simply forgets about composition and identities.
Since functors are also a new structure, one might expect that there are trans-

formations between functors that preserve it. It is indeed the case, they are called
natural transformations and they are the main subject of Chapter ??. Moreover,
although we will not cover it, there is a whole tower of abstraction that one could
build in this way, and it is the subject of study of higher category theory.

1.3 Diagram Paving

If you are in awe at how wonderful the diagrammatic proof of Proposition 130, this
section is for you. We introduce the proof technique called diagram paving114 and 114 Usually, diagram paving refers to a more gen-

eral version of what I will show you. That tech-
nique is used in higher category theory.

my first category theory textbook 35

set up some exercises for practice.
The key idea in that proof is that combining commutative diagrams yields com-

mutative diagrams.115 In general, paving a diagram that we want to show com- 115 The term “combining“ is not precisely de-
fined, our intuition of what it means should be
enough.

mutes is the process of progressivelly adding more objects and morphisms to ob-
tain multiple diagrams we know (by hypothesis or previous lemmas) commute that
combine into the original one.

Let us clarify by example. In the setting of Proposition 130, to show that G ◦ F
is a functor, we need to prove (14) instantiated with G ◦ F is commutative.116 It is 116 We only do the first diagram.

drawn in (20).

C0 C1 C0

E0 E0 E0

(G◦F)0 (G◦F)1 (G◦F)0

s

s t

t

(20)

We can factor the action of G ◦ F and draw (21). We indicated with ⟲ that some
parts of the diagram are known to commute (by definition of G ◦ F).117 117 We did not leave the arrow (G ◦ F)1 because

it would make the diagram messy.

C0 C1 C0

D0 D1 D0

E0 E0 E0

(G◦F)0 (G◦F)0

s

s t

t

F0

G0

F1

G1

F0

G0

⟲ ⟲ (21)

Then we can decompose the two rectangles into four squares that all commute by
hypothesis that F and G are functors.

C0 C1 C0

D0 D1 D0

E0 E0 E0

(G◦F)0 (G◦F)0

s

s t

t

F0

G0

F1

G1

F0

G0

ts
⟲ ⟲

⟲

⟲ ⟲

⟲

(22)

Finally, we recognize that all the commutative diagrams in (22) combine into (20),
so the latter is commutative.

From now on, when doing proofs by paving a diagram, we will only show the
last paved diagram. Instead of ⟲, we will use letters to indicate regions that com-
mute so we can refer to each region in the text and explain why they commute.

There is one last thing we want to mention to end this chapter. We gave two
central definitions, categories and functors, and we presented several examples of
each. By defining products, we give you access to an unlimited amount of new
categories and functors you can construct from known ones.118 118 This is akin to products of groups, direct

sums of vector spaces, etc. In Chapter 3, we will
see how all of these constructions are instances
of a more general construction called (categori-
cal) product.

Definition 132 (Product category). Let C and D be two categories, the product of
C and D, denoted by C×D, is the category whose objects are pairs of objects in
C0 ×D0 and for any two pairs (X, Y), (X′, Y′) ∈ (C×D)0,119

119 Explicitly, a morphism (X, Y) → (X′, Y′) is a
pair of morphisms X → X′ and Y → Y′.

36 ralph sarkis

HomC×D((X, Y), (X′, Y′)) := HomC(X, X′)×HomD(Y, Y′).

The identity morphisms and the composition are defined componentwise. Explic-
itly, for all X ∈ C0 and Y ∈ D0, id(X,Y) = (idX , idY), and for all (f , f ′) ∈ C2 and
(g, g′) ∈ D2, (f , g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ g′).120 120 We leave you to check that this defines the

composition for all of (C × D)2. Namely, if
(f , g) and (f ′, g′) are composable, then (f , f ′)
and (g, g′) are composable.

SOL Exercise 133 (NOW!). Verify that the category depicted in (9) is appropriately de-
noted by 2× 2, i.e., that it is the product category formed with C = D = 2.

SOL Exercise 134. Show that the assignment ∆C : C ⇝ C× C = X 7→ (X, X) is functo-
rial, i.e., give its action on morphisms and show it satisfies the relevant axioms. We
call ∆C the diagonal functor.

Definition 135 (Product functor). Let F : C ⇝ C′ and G : D ⇝ D′ be two func-
tors, the product of F and G, denoted F × G : C × D ⇝ C′ × D′, is defined
componentwise on objects and morphisms, i.e., for any (X, Y) ∈ (C × D)0 and
(f , g) ∈ (C×D)1,

(F× G)(X, Y) = (FX, GY) and (F× G)(f , g) = (F f , Gg).

Let us check this defines a functor.

i. By definition of C′ ×D′, (F f , Gg) is a morphism from (FX, GY) to (FX′, GY′).

ii. For (f , f ′) ∈ C2 and (g, g′) ∈ D2, we have

(F× G)((f , g) ◦ (f ′, g′)) = (F× G)(f ◦ f ′, g ◦ g′)

= (F(f ◦ f ′), G(g ◦ g′))

= (F f ◦ F f ′, Gg ◦ Gg′)

= (F f , Gg) ◦ (F f ′, Gg′)

= (F× G)(f , g) ◦ (F× G)(f ′, g′).

iii. Since F and G preserve identity morphisms, we have

(F×G)(id(X,Y)) = (F×G)(idX , idY) = (FidX , GidY) = (idFX , idGY) = id(FX,GY).

SOL Exercise 136 (NOW!). Let F : C × C′ ⇝ D be a functor. For X ∈ C0, we define
F(X,−) : C′ ⇝ D on objects by Y 7→ F(X, Y) and on morphisms by g 7→ F(idX , g).
Show that F(X,−) is a functor. Define F(−, Y) similarly.

SOL Exercise 137. Let F : C× C′ → D be an action defined on objects and morphisms
satisfying

F(f , g) = F(f , idt(g)) ◦ F(ids(f), g) = F(idt(f), g) ◦ F(f , ids(g)).

Show that if for any X ∈ C0 and Y ∈ C′0, F(X,−) and F(−, Y) as defined above are
functors, then F is a functor. In other words, the functoriality of F can be proven
componentwise.

In the next chapters, we will present other interesting constructions of categories,
but we can stop here for now.

2 Duality
2.1 Contravariant Functors 38

2.2 Opposite Category 40

2.3 Duality in Action 41

2.4 More Vocabulary 48

The concept of duality is ubiquitous throughout mathematics. It can relate two
perspectives of the same object as for dual vector spaces, two complementary op-
timization problems such as a maximization and a minimization linear program,
and even two seemingly unrelated subjects like topology and logic (Stone duality).
While this vague principle of duality is behind many groundbreaking results, the
duality in question here is categorical duality and it is a bit more precise.

Informally, there is nothing more to say than “Take all the diagrams in a defini-
tion/theorem, reverse the arrows and reap the benefits of the dual concept/result.”121 121 In my opinion, this is already a very good

reason to learn category theory because we can
basically get twice as much math as before by
framing things with a categorical language.

The more formal version will follow after we first exhibit the principle in action.
Recall that, intuitively, a functor is a structure-preserving transformation between

categories. A simple example we have seen is functors between posets that are
order-preserving functions. However, as a consequence, one might conclude that
order-reversing functions impair the structure of a poset, which feels arbitrary. The
same happens between deloopings of groups because anti-homomorphisms122 do 122 An anti-homomorphism f : G → H is a func-

tion satisfying f (gg′) = f (g′) f (g) and f (1G) =
f (1H).

not arise as functors between such categories.
For a more concrete situation, recall the powerset functor P described in Example

126.1. It assigns to any set X the powerset PX, and to any function f : X → Y the
image function P(f) : PX → PY. There is another important function associated to
f between powersets: the inverse image f−1 that assigns to S ⊂ Y the set of points
in X whose images are in S. Unfortunately, f−1 goes in the “wrong” direction
PY → PX.

This is quite unsatisfactory because the assignment f 7→ f−1 is well-behaved, e.g.
we have id−1

X = idPX for any set X and, for any functions f : X → Y and g : Y → X,
(f ◦ g)−1 = g−1 ◦ f−1. This second equation looks just like the second condition on
functors reversed. In words, taking the inverse image preserves composition but in
reverse.

It seems arbitrary to distinguish between both options. There are two ways to
remedy this discrepancy between intuition and formalism; both have duality as an
underlying principle. In this chapter, we will describe both ways, dismiss one of
them, and showcase the strength of duality while exploring more basic category
theory.

https://en.wikipedia.org/wiki/Stone_duality

38 ralph sarkis

2.1 Contravariant Functors

By modifying Definition 117 to require that F(f) goes in the opposite direction, we
obtain a contravariant functor. Incidentally, what we defined as a functor before is
also called a covariant functor.

Definition 138 (Contravariant functor). Let C and D be categories, a contravariant
functor F : C ⇝ D is a pair of maps F0 : C0 → D0 and F1 : C1 → D1 making
diagrams (23), (24) and (25) commute.123 123 Where F′2 is now induced by the definition of

F1 with (f , g) 7→ (F1(g), F1(f)).

C0 C1 C0

D0 D1 D0

F0 F1

s t

F0

t s

(23)

C2 D2

C1 D1

◦C

F′2

◦D

F1

(24)

C0 D0

C1 D1

uC

F0

uD

F1

(25)

In words, F must satisfy the following properties.

i. For any A, B ∈ C0, if f ∈ HomC(A, B) then F(f) ∈ HomD(F(B), F(A)).

ii. If f , g ∈ C1 are composable, then F(f ◦ g) = F(g) ◦ F(f).

iii. If A ∈ C0, then uD(F(A)) = F(uC(A)).

Examples 139. Just like their covariant counterparts, contravariant functors are
quite numerous. Here are a couple of simple ones.

1. Contravariant functors F : (X,≤) ⇝ (Y,⊑) correspond to order-reversing func-
tions between the posets X and Y and contravariant functors F : BG ⇝ BH
correspond to anti-homomorphisms between the groups G and H.

2. The contravariant powerset functor 2− : Set⇝ Set sends a set X to its powerset
2X ,124 and a function f : X → Y to the preimage map 2 f : 2Y → 2X , the latter 124 We use a different notation for the powerset

to emphasize the difference between P and 2−.sends a subset S ⊆ Y to

2 f (S) = f−1(S) := {x ∈ X | f (x) ∈ S} ⊆ X.

Next, there is a couple of functors that are key to understand the philosophy put
forward by category theory.125 125 We will talk more about it when covering the

Yoneda lemma in Chapter ??.
Example 140 (Hom functors). Let C be a locally small category and A ∈ C0 one of
its objects.126 We define the covariant and contravariant Hom functors from C to 126 We need local smallness so that each

HomC(A, B) is a set and the functors land in
Set.

Set.

1. The covariant Hom functor HomC(A,−) : C ⇝ Set sends an object B ∈ C0 to
the hom-set HomC(A, B) and a morphism f : B→ B′ to the function

HomC(A, f) : HomC(A, B)→ HomC(A, B′) = g 7→ f ◦ g.

my first category theory textbook 39

This function is called post-composition by f and is denoted f ◦ (−).127 Let us
127 Some authors denote f ◦ (−) as f ∗, we prefer
to keep this notation for later (see pullbacks).show HomC(A,−) is a covariant functor.

i. For any f ∈ C1, it is clear from the definition that

HomC(A, s(f)) = s(f ◦ (−)) and HomC(A, t(f)) = t(f ◦ (−)).

ii. For any (f1, f2) ∈ C2, we claim that

HomC(A, f1 ◦ f2) = HomC(A, f1) ◦HomC(A, f2).

In the L.H.S., an element g ∈ HomC(A, s(f1 ◦ f2)) is mapped to (f1 ◦ f2) ◦ g
and in the R.H.S., an element g ∈ HomC(A, s(f2)) is mapped to f1 ◦ (f2 ◦ g).
Since s(f1 ◦ f2) = s(f2) and composition is associative, we conclude that the
two maps are the same.

iii. For any B ∈ C0, the post-composition by uC(B) is defined to be the iden-
tity,128 hence (16) also commutes. 128 Namely, for any f : A→ B, uC(B) ◦ f = f .

2. The contravariant Hom functor HomC(−, A) : C ⇝ Set sends an object B ∈ C0

to the hom-set HomC(B, A) and a morphism f : B→ B′ to the function

HomC(f , A) : HomC(B′, A)→ HomC(B, A) = g 7→ g ◦ f .

This function is called pre-composition by f and is denoted (−) ◦ f .129 Let us
129 Some authors denote (−) ◦ f as f∗, we prefer
to keep this notation for later (see pushouts).show HomC(−, A) is a contravariant functor.

i. For any f ∈ C1, it is clear from the definition that

HomC(s(f), A) = t((−) ◦ f)) and HomC(t(f), A) = s((−) ◦ f).

ii. For any (f1, f2) ∈ C2, we claim that

HomC(f1 ◦ f2, A) = HomC(f2, A) ◦HomC(f1, A).

In the L.H.S., an element g ∈ HomC(t(f1 ◦ f2), A) is mapped to g ◦ (f1 ◦ f2)

and in the R.H.S., an element g ∈ HomC(t(f1), A) is mapped to (g ◦ f1) ◦ f2.
Since t(f1 ◦ f2) = t(f1) and composition is associative, we conclude that the
two maps are the same.

iii. For any B ∈ C0, pre-composition by uC(B) is defined to be the identity,130 130 Namely, for any f : B→ A, f ◦ uC(B) = f .

hence (25) also commutes.

It can take a bit of time to get comfortable with Hom functors. For now, we will
give only one example of each kind (covariant and contravariant), but we will take
more time to play with them later in the book.

Example 141 (Ring of functions).

40 ralph sarkis

Example 142 (Dual vector space). In the category Vectk, there is a special object
k,131 let us see what the contravariant functor HomVectk (−, k) does. It assigns to 131 We know it is special because we know some

linear algebra, but k also has some interesting
categorical properties (see Exercise 176).

any vector space V the set of linear maps V → k, that is, the carrier set of the dual
space V∗. It assigns to linear maps T : V →W, the function

HomVectk (W, k)→ HomVectk (V, k) = ϕ 7→ ϕ ◦ T.

We know that HomVectk (V, k) = V∗ can be seen as a vector space and it is easy to
check that pre-composition by T is a linear map W∗ → V∗. Therefore, we find that
the assignment V 7→ V∗ = HomVectk (−, k) is a contravariant functor Vectk ⇝ Vectk.

We will not dwell too long on contravariant functors as we will see right away
how they can be avoided, but first, let us give a reason why we want to avoid them.

SOL Exercise 143. Let F : C⇝ D, G : D⇝ E be contravariant functors, and G ◦ F : C⇝
E be their composition defined by G0 ◦ F0 on objects and G1 ◦ F1 on morphisms.
Show that G ◦ F is a covariant functor.132 Using diagrams will be easier. 132 We conclude that we cannot straightfor-

wardly compose contravariant functors. This
alone makes the following alternative more de-
sirable because we want functors to be mor-
phisms in a category, hence they must be com-
posable.

2.2 Opposite Category

Another way to deal with order-reversing maps (X,≤) → (Y,⊆) is to consider the
reverse order on X and a covariant functor (X,≥) ⇝ (Y,⊆). This also works for
anti-homomorphisms by constructing the opposite group Gop in which the opera-
tion is reversed, namely g·oph = hg. The opposite category is a generalization of
these constructions.

Definition 144 (Opposite category). Let C be a category, we denote the opposite
category with Cop and define it by133 133 Intuitively, we reverse the direction of all

morphisms in C and reverse the order of com-
position as well.Cop

0 = C0, Cop
1 = C1, sop = t, top = s, uCop = uC

with the composition defined by f op◦opgop = (g ◦ f)op.134 This naturally leads to 134 Note that the −op notation here is just used to
distinguish elements in C and Cop but the col-
lection of objects and morphisms are the same.

the following contravariant functor (−)op
C : C ⇝ Cop which sends an object A to

Aop and a morphism f to f op. It is called the opposite functor.

With this definition, one can see contravariant functors as covariant functors.
Formally, let F : C ⇝ D be a contravariant functor, we can view F as covariant
functor from Cop to D or from C to Dop via the compositions F ◦ (−)op

Cop and (−)op
D ◦

F respectively.135 135 Recall from Exercise 143 that these composi-
tions are covariant.In the rest of this book, we choose to work with covariant functors of type Cop ⇝

D instead of contravariant functors C ⇝ D,136 and functors will be covariant by 136 We still had to learn about contravariant func-
tors because you might encounter them in the
wild.

default.

Examples 145. 1. As hinted at before, the category corresponding to (X,≥) is the
opposite category of (X,≤) and (BG)op is the category corresponding to the
opposite group of G, i.e.: (BG)op = B(Gop).

2. We have seen that functors BG ⇝ Set correspond to left actions of a group G.
You can check that functors BGop ⇝ Set correspond to right actions of G.

my first category theory textbook 41

3. The two Hom functors defined in Example 140 are now written

HomC(A,−) : C⇝ Set and HomC(−, A) : Cop ⇝ Set.

By Exercise 137, they can be combined into a functor

HomC(−,−) : Cop × C⇝ Set

acting on objects as (A, B) 7→ HomC(A, B) and on morphisms as (f , g) 7→ (g ◦
− ◦ f). The condition in Exercise 137 is satisfied because137 137 Looking at where the source and target

functions are applied, these equalities do not
match exactly what is in Exercise 137 since
HomC(−,−) is contravariant in the first com-
ponent.

HomC(f , g) = g ◦ − ◦ f

= idt(g) ◦ (g ◦ − ◦ idt(f)) ◦ f = HomC(f , idt(g)) ◦HomC(idt(f), g)

= g ◦ (ids(g) ◦ − ◦ f) ◦ ids(f) = HomC(ids(f), g) ◦HomC(f , ids(g)).

This will be called the Hom bifunctor.

SOL Exercise 146. Let F : C ⇝ D be a functor, show that its dual Fop defined by
Aop 7→ (FA)op on objects and f op 7→ (F f)op on morphisms is a functor Cop ⇝ Dop.

Remark 147. It is sometimes useful to compose the Hom bifunctor with other func-
tors as follows. Given two functors F, G : C⇝ D, there is a functor HomD(F−, G−) :
Cop ×C⇝ D acting on objects by (X, Y) 7→ HomD(FX, GY) and on morphisms by
(f , g) 7→ Gg ◦ (−) ◦ F f . One can check functoriality by showing

HomD(F−, G−) = HomD(−,−) ◦ (Fop × G).

2.3 Duality in Action

Let us start to illustrate how duality can be useful while covering important defini-
tions and results.

Definition 148 (Monomorphism). Let C be a category, a morphism f ∈ C1 is said
to be monic (or a monomorphism) if for any parallel morphisms g and h such that
(f , g), (f , h) ∈ C2, f ◦ g = f ◦ h implies g = h. Equivalently, f is monic if g = h
whenever the following diagram commutes.138 138 According to Definition 99, this diagram com-

mutes if and only if f ◦ g = f ◦ h because the
paths (f , g) and (f , h) are the only paths of
length bigger than one.• • •

h

g
f

(26)

Standard notation for a monomorphism is •↣ • (\rightarrowtail).139 139 Another widespread notation is • ↪→ •. I pre-
fer to use the latter when we understand the
morphism as an “inclusion” of the first object
in the second. These are often monic.

Proposition 149. Let C be a category and f : A→ B a morphism, if there exists f ′ : B→
A such that f ′ ◦ f = idA,140 then f is a monomorphism.

140 We say that f ′ is a left inverse of f .

Proof. If f ◦ g = f ◦ h, then f ′ ◦ f ◦ g = f ′ ◦ f ◦ h implying g = h.

Not all monomorphisms have a left inverse, those that do are called split monomor-
phisms.

42 ralph sarkis

Proposition 150. Let C be a category and (f1, f2) ∈ C2, if f1 ◦ f2 is a monomorphism,
then f2 is a monomorphism.

Proof. Let g, h ∈ C1 be such that f2 ◦ g = f2 ◦ h, we readily get that (f1 ◦ f2) ◦ g =

(f1 ◦ f2) ◦ h. Since f1 ◦ f2 is a monomorphism, this implies g = h.

The last two results hint at the fact that monomorphisms are analogues to injec-
tive functions and we will see that they are exactly the same in the category Set,
but first let us introduce the dual concept after the formal definition of duality.

Definition 151 (Duality). Given a definition or statement in an arbitrary category C,
one could view this concept inside the category Cop and obtain a similar definition
or statement where all morphisms and the order of composition are reversed, this is
called the dual concept. Since Copop = C, taking the dual is an involution, namely,
the dual of the dual of a thing is that thing. For a definition or result where multiple
arbitrary categories are involved, the dual version is obtained by taking the opposite
of all categories.141 It is common but not systematic to refer to a dual notion with 141 Note the emphasis on the word “arbitrary”.

For instance, a presheaf is a functor F : Cop ⇝
Set and the dual concept is a copresheaf, a

functor F : C ⇝ Set; we did not take the op-
posite of Set.

the prefix “co” (e.g.: presheaf and copresheaf).

Dualizing the definition of a monomorphism yields an epimorphism.

Definition 152 (Epimorphism). Let C be a category, a morphism f ∈ C1 is said to
be epic (or an epimorphism) if for any two parallel morphisms g and h such that
(g, f), (h, f) ∈ C2, g ◦ f = h ◦ f implies g = h. Equivalently, f is epic if g = h
whenever the following diagram commutes.142 142 Seeing the diagrams make it clearer that the

concepts are dual. Reversing the arrows in (26)
yields (27) and vice-versa.

• • •
f

g

h

(27)

Standard notation for an epimorphism is •↠ • (\twoheadrightarrow).

The dual versions of Propositions 149 and 150 also hold. Although translating
our previous proofs to the dual case is straightforward, we will do the two next
proofs relying on duality to convey the general sketch that works anytime a dual
result needs to be proven.

Proposition 153. Let C be a category and f : A→ B a morphism, if there exists f ′ : B→
A such that f ◦ f ′ = idB, then f is epic.143 143 We say that f ′ is a right inverse of f .

Proof. Observe that f is epic in C if and only if f op is monic in Cop (reverse the
arrows in the definition).144 Moreover, by definition, 144 This is another way to see that two concepts

are dual.

f ′op ◦ f op = (f ◦ f ′)op
= idB

op = idBop ,

so by the result for monomorphisms, f op is monic and hence f is epic.

Not all epimorphisms have a right inverse, those that do are called split epimor-
phisms.

Proposition 154. Let C be a category and (f1, f2) ∈ C2, if f1 ◦ f2 is epic, then f1 is epic.

my first category theory textbook 43

Proof. Since f2
op ◦ f1

op = (f1 ◦ f2)
op is monic, the result for monomorphisms im-

plies f1
op is monic and hence f1 is epic.

Example 155 (Set). We mentioned that monomorphisms are like generalizations of
injective functions, and you may have guessed that epimorphisms are, in the same
sense, generalizations of surjective functions. Let us make this precise.

• A function f : A→ B is a monomorphism in Set if and only if it is injective:145 145 As a consequence, since all injective functions
have a left inverse, all the monomorphisms in
Set are split.(⇐) Since f is injective, it has a left inverse, so it is monic by Proposition 149.

(⇒) Given a ∈ A, let ga : {∗} → A be the function sending ∗ to a. For any
a1 ̸= a2 ∈ A, the functions ga1 and ga2 are different, hence f ◦ ga1 ̸= f ◦ ga2 .
Therefore, f (a1) ̸= f (a2) implying f is injective.

• A function f : A→ B is an epimorphism if and only if it is surjective:146 146 If you assume the axiom of choice, all surjec-
tive functions have a right inverse and thus all
epimorphisms in Set are split.(⇐) Since f is surjective, it has a right inverse, so it is epic by Proposition 153.

(⇒) Let h : B → {0, 1} be the constant function at 1 and g : B → {0, 1} be the
indicator function of Im(f) ⊆ B, namely,

g(x) =

1 ∃a ∈ A, x = f (a)

0 otherwise
.

We see that g ◦ f = h ◦ f are both constant at 1, and f being epic implies g = h.
Thus, any element of B is in the image of f , that is, f is surjective.

Example 156 (Mon). Inside the category Mon, the monomorphisms are precisely
the injective homomorphisms.

(⇒) Let f : M → M′ be an injective homomorphisms and g1, g2 : N → M be
two parallel homomorphisms. Suppose that f ◦ g1 = f ◦ g2, then for all x ∈ N,
f (g1(x)) = f (g2(x)), so by injectivity of f , g1(x) = g2(x). Therefore, g1 = g2 and
since g1 and g2 were arbitrary, f is a monomorphism.

(⇐) Let f : M→ M′ be a monomorphism. Let x, y ∈ M and define px : (N,+)→
M by k 7→ xk and similarly for py. It is easy to show that px and py are homomor-
phisms.147 If f (x) = f (y), then, by the homomorphism property, for all k ∈N 147 It follows from the definition of xk which is

x
k· · · x.

f (px(k)) = f (xk) = f (x)k = f (y)k = f (yk) = f (py(k)).

In other words, we get f ◦ px = f ◦ py, so px = py and x = y. This direction follows.
Conversely, an epimorphism is not necessarily surjective. For example, the in-

clusion homomorphism i : (N,+) → (Z,+) is clearly not surjective, but it is an
epimorphism. Indeed, let g, h : (Z,+) → M be two monoid homomorphisms sat-
isfying g ◦ i = h ◦ i. In particular, g(n) = h(n) for any n ∈ N ⊂ Z. It remains to
show that also g(−n) = h(−n): we have

h(n)g(−n) = g(n)g(−n) = g(n− n) = g(0) = 1M

h(−n)h(n) = h(−n + n) = h(0) = 1M,

but then g(−n) = h(−n)h(n)g(−n) = h(−n).

44 ralph sarkis

SOL Exercise 157. Show that a monomorphism in Cat is a functor that is faithful and
injective on objects, it is called an embedding.148 148 Finding a nice characterization of epimor-

phisms in Cat is an open question as far as I
know.SOL Exercise 158. Show that a morphism f ∈ C1 is monic if and only if the function

HomC(A, f) = f ◦ − is injective for all A ∈ C0. Dually, show that f is epic if and
only if the function HomCop(Aop, f op) = HomC(f , A) = − ◦ f is injective for all
A ∈ C0.

Remark 159. These alternative definitions of monomorphisms and epimorphisms
are more categorical in nature. In fact, in the setting of enriched category theory
they are preferable because they generalize easily.

Definition 160 (Isomorphism). Let C be a category, a morphism f : A→ B is said to
be an isomorphism if there exists a morphism f−1 : B→ A such that f ◦ f−1 = idB

and f−1 ◦ f = idA.149 149 Then f−1 is called the inverse of f . One can
check that if f ′ is a left inverse of f and f ′′ is a
right inverse, then f ′ = f ′′ = f−1. Hence, the
inverse is unique.

SOL Exercise 161. Show that the property of being monic/epic/an isomorphism is in-
variant under composition, i.e., if f and g are composable monomorphisms, then
f ◦ g is monic and similarly for epimorphisms and isomorphisms.

Remark 162. The results shown about monic and epic morphisms150 imply that any 150 Proposition 149 and 153.

isomorphism is monic and epic. However, the converse is not true as witnessed by
the inclusion morphism i described in Example 156.151 A category where all monic 151 This is not akin to the situation in Set be-

cause, there, all monomorphisms and epimor-
phisms are split (assuming the axiom of choice).

and epic morphisms are isomorphisms (e.g.: Set) is called balanced. If there exists
an isomorphism between two objects A and B, then they are isomorphic, denoted
A ∼= B. Isomorphic objects are also isomorphic in the opposite category,152 that is,

152 Because the left inverse becomes the right in-
verse and vice-versa.the concept of isomorphism is self-dual.

For most intents and purposes, we will not distinguish between isomorphic ob-
jects in a category because all the properties we care about will hold for one if and
only if they hold for the other. This attitude should be somewhat familiar if you
have done a bit of abstract algebra because it is natural to substitute the group
Z/2Z×Z/3Z for Z/6Z or kn for an n–dimensional vector space over k. It is less
natural in Set because, for instance, it equates the sets {0, 1} and {a, b} which may
be too coarse-grained for our intuition.

Example 163 (Set). A function f : X → Y in Set1 has an inverse f−1 if and only if
f is bijective, thus isomorphisms in Set are bijections. As a consequence, we have
A ∼= B if and only if |A| = |B|.153 153 This is in fact the definition of cardinality.

Example 164 (Cat). An isomorphism in Cat is a functor F : C⇝ D with an inverse
F−1 : D ⇝ C. This implies that F0 and F1 are bijections154 because (F−1)0 is the 154 When F0 is a bijection, F1 is a bijection if and

only if F is fully faithful. Indeed, ...inverse of F0 and (F−1)1 is the inverse of F1.
Conversely, if F : C ⇝ D is a functor whose component on objects and mor-

phisms are bijective, we check that defining F−1 : D ⇝ C with (F−1)0 := (F0)
−1

and (F−1)1 := (F1)
−1 yields a functor.

i. Let f ∈ HomD(A, B), by bijectivity of F0 and F1, there are X, Y ∈ C0 and
g : X → Y such that FX = A, FY = B and Fg = f . Then, by definition,

s(F−1 f) = s(g) = X = F−1FX = F−1 A, and

https://ncatlab.org/nlab/show/enriched+category+theory

my first category theory textbook 45

t(F−1 f) = t(g) = Y = F−1FY = F−1B.

ii. For any (f , f ′) ∈ D2 with f = Fg and f ′ = Fg′, we find

F−1(f ◦ f ′) = F−1(Fg ◦ Fg′) = F−1F(g ◦ g′) = g ◦ g′ = F−1Fg ◦ F−1Fg′ = F f ◦ F f ′.

iii. For any A ∈ D0 with A = FX, we find

F−1idA = F−1idFX = F−1FidX = idX = idF−1FX = idF−1 A.

We can conclude that isomorphisms in Cat are precisely the functors which are
bijective on objects and morphisms. Furthermore, Footnote 154 implies they are
precisely fully faithful functors that are bijective on objects.

Examples 165 (Concrete categories). In a concrete category C with forgetful functor
U, the underlying function of an isomorphism f must bijective because U(f−1) is
the inverse of U f . This condition may be sufficient or not.

1. It is a simple exercise in an algebra class to show that isomorphisms in the
categories Mon, Grp, Ring, Field and Vectk are simply bijective homomor-
phisms.155 155 In fact, isomorphisms are commonly defined

as bijective homomorphisms in said algebra
class.2. In Poset, an isomorphism between (A,≤A) and (B,≤B) is a bijective function

f : A → B satisfying a ≤A a′ ⇔ f (a) ≤B f (a′). Such a function is clearly mono-
tone, but its inverse is also monotone as for any b ≤B b′, we have f f−1(b) ≤B

f f−1(b′) =⇒ f−1(b) ≤A f−1(b′).

3. In Top, it is not enough to have a bijective continuous function, we need to
require that it has a continuous inverse.156 Such functions are called homeomor- 156 Consider X = {0, 1} with the two extreme

topologies τ⊥ = {∅, X} and τ⊤ = PX. The
identity map idX : (X, τ⊤) → (X, τ⊥) is clearly
bijective and continuous, but its inverse is not
continuous. A similar example shows that a bi-
jective monotone function is not necessarily a
poset isomorphism.

phisms.

Definition 166 (Initial object). Let C be a category, an object A ∈ C0 is said to
be initial if for any B ∈ C0, |HomC(A, B)| = 1, namely there are no two parallel
morphisms with source A and every object has a morphism coming from A. The157

157 We will soon see why we can use the instead
of an.initial object of a category, if it exists, is denoted ∅ and the unique morphism from

∅ to X ∈ C0 is denoted [] : ∅→ X.

Definition 167 (Terminal object). Let C be a category, an object A ∈ C0 is said
to be terminal158 if for any B ∈ C0, |HomC(B, A)| = 1, namely there are no two 158 The terminology final is also common.

parallel morphisms with target A and every object has a morphism going to A. The
terminal object of a category, if it exists, is denoted 1 and the unique morphism from
X ∈ C0 into 1 is denoted ⟨⟩ : X → 1.

Remark 168 (Notation). The motivation behind the notations ∅ and 1 is given shortly,
but the notations for the morphisms will be explained in Chapter 3.

An object is initial in a category C if and only if it is terminal in Cop, so these
two concepts are dual. Also, if an object is initial and terminal, we say it is a zero
object and usually denote it 0.159 159 Clearly, the concept of zero object is self-dual.

46 ralph sarkis

Example 169 (Set). Let X be a set, there is a unique function from the empty set
into X, it is the empty function.160 We deduce that the empty set is the initial object 160 Recall (or learn here) that a function f : A →

B is defined via subset of f ⊆ A× B that satisfies
∀a ∈ A, ∃!b ∈ B, (a, b) ∈ f . When A is empty,
A × B is empty and the only subset ∅ ⊆ A ×
B satisfies the condition vacuously. In passing,
when B is empty but A is not, the unique subset
of A× B does not satisfy the condition, so there
is no function A→ ∅.

in Set, hence the notation ∅. For the terminal object, we observe that there is a
unique function X → {∗} sending all elements of X to ∗, thus 1 = {∗} is terminal
in Set.

In this example, we could have chosen any singleton to show it is terminal.
However, that choice is irrelevant to a good category theorist because just as any
two singletons are isomorphic (because they have the same cardinality), any two
terminal objects are isomorphic.

Proposition 170. Let C be a category and A, B ∈ C0 be initial, then A ∼= B.

Proof. Let f be the single element in HomC(A, B) and f ′ be the single element in
HomC(B, A). Both the identity morphism idA and f ′ ◦ f belong to HomC(A, A)

which must have cardinality 1 because A is initial. Similarly idB and f ◦ f ′ belong
to HomC(B, B) which has cardinalty 1 because B is initial. We conclude that f ′ ◦ f =

idA and f ◦ f ′ = idB. In words, f and f ′ are inverses, thus A ∼= B.

Corollary 171 (Dual). Let C be a category and A, B ∈ C0 be terminal, then A ∼= B.161 161 From now on, I let you prove many dual re-
sults on your own — I will try to continue doing
the complicated ones. They are not necessarily
great exercises, but you can certainly do them if
you want to follow this book at a slower pace.

Rewording the last two results, we can say that initial (resp. terminal) objects
are unique up to isomorphisms. However, the situation is quite nicer. Initial (resp.
terminal) objects are unique up to unique isomorphisms. Indeed, if there is an
isomorphism f : A→ B and A and B are initial (resp. terminal), then, by definition,
f is the unique morphism in HomC(A, B).

SOL Exercise 172. Show that in Cat, the initial object is the empty category (no objects
and no morphisms) and the terminal object is the category with one object 1 (hence
the agreeing notation).162 162 Hint: the unique functor ⟨⟩ : C → 1 is the

constant functor at the object • ∈ 10.

Example 173 (Grp). Similarly to Set, the trivial group with one element is termi-
nal in Grp. Moreover, note that there are no empty group (because a group must
contain an identity element), but any group homomorphism from the trivial group
{1} into a group G must send 1 to 1G, which completely determines the homomor-
phism. Therefore, the trivial group is also initial in Grp, it is the zero object.

Example 174 (Met). The terminal object in Met is the space with only one point
∗. The distance is determined by the axioms on a metric, because d1(∗, ∗) must be
equal to 0.163 The initial object in Met is the empty space, for the same reason that 163 The function sending all of X to ∗ is nonex-

pansive whatever the distance d on X because
d(x, y) ≥ 0 = d1(∗, ∗).

∅ is initial in Set.

SOL Exercise 175. Find the initial and terminal objects in Set∗.

SOL Exercise 176. Find the initial and terminal objects in Vectk.

SOL Exercise 177. Find a category with only two objects X and Y such that

(a) X is initial but not terminal and Y is terminal but not initial.

my first category theory textbook 47

(b) X is initial but not terminal and Y neither terminal nor initial.

(c) X is terminal but not initial and Y is neither terminal nor initial.

(d) X is initial and terminal and Y is neither terminal nor initial.

Examples 178. Here are more examples of categories where initial and terminal
objects may or may not exist.

0• 1• 2• · · · (28)1. ∃ terminal, ∄ initial: Consider the poset (N,≥) represented by diagram (28). It
is clear that 0 is terminal and no element can be initial because 0 ≥ x implies
x = 0.

2. ∄ terminal, ∃ initial:164 Recall the category SetInj of finite sets and injective 164 Of course, you could take the opposite of
(N,≥), that is (N,≤), but that is not fun.functions. The empty set is still initial but the singletons are not terminal because

a function from a set S into {∗} is never injective when |S| > 1.

3. ∄ terminal, ∄ initial: Let G be a non-trivial group, the delooping of G has no
terminal and no initial objects. The category BG has a single object ∗ with
HomBG(∗, ∗) = G, so ∗ cannot be initial nor terminal when |G| > 1.

For a more interesting example, consider the category Field. Its underlying
directed graph is disconnected165 because there are no field homomorphisms 165 There are objects with no morphisms between

them.between fields of different characteristic. Therefore, Field has no initial nor ter-
minal objects.

4. ∃ terminal, ∃ initial: The empty set is both initial and terminal in the category
Rel because a relation ∅→ A (resp. A→ ∅) is a subset of ∅× A (resp. A×∅),
and the latter has a unique subset for all sets A.

For an example with no zero object, let X be a non-empty topological space
where τ is the collection of open sets.166 The category of open sets O(X) satisfies 166 Recall that it must contain ∅ and X.

HomO(X)(U, V) =

{iU,V} U ⊆ V

∅ U ̸⊆ V

Since the empty set is contained in every open set, it is an initial object. Since the
full set X contains every open set, it is a terminal object. Any other set cannot
be initial as it cannot be contained in ∅ nor terminal as it cannot contain X.
Moreover, note that the two objects are not isomorphic because X ̸⊆ ∅.

SOL Exercise 179. Let C be a category with a terminal object 1. Show that any morphism
f : 1→ X is monic. State and prove the dual statement.

SOL Exercise 180. Let C and D be categories, and 1C and 1D be terminal objects in C
and D respectively. Show that (1C, 1D) is terminal in the C×D. State and prove
the dual statement.

Example 181. For our last application of duality in this section,167 let X be a set 167 Do not worry, we will have plenty of oppor-
tunities to use duality later.and consider the posetal category (PX,⊆). We would like to define the union of

48 ralph sarkis

two subsets of X in this category. The usual definition A ∪ B = {x ∈ X | x ∈
A or x ∈ B} is not suitable because the data in the posetal category PX never refers
to elements of X. In particular, the subsets A, B ⊆ X are simply objects in the
category and it is not clear to us how we can determine what elements are in A and
B with our categorical tools (objects and morphisms).

We propose another characterization of the union of A and B. First, what is
obvious, A ∪ B contains A and it contains B. Second, A ∪ B is the smallest subset
of X containing A and B. Indeed, if Y ⊆ X contains all elements in A and B, then
it also contains A ∪ B. Using the order ⊆ (or equivalently, the morphisms in the
category PX), we have168 168 We leave it as an exercise to show that A ∪ B

is the only subset of X satisfying this property.
A, B ⊆ A ∪ B and ∀Y s.t. A, B ⊆ Y then A ∪ B ⊆ Y.

This yields a definition of ∪ within the category PX, which means we can look in
the opposite of PX and dualize ∪.

The dual of this property (reversing all inclusions) is as follows.169 169 The symbol □ is a placeholder for the opera-
tion which we will find to be dual to union.

A□B ⊆ A, B and ∀Y s.t. Y ⊆ A, B then Y ⊆ A□B

Putting this in words, A□B is the largest subset of X which is contained in A and
B. That is, of course, the intersection A ∩ B. In this sense, union and intersection
are dual operations. If you search your memory for properties about union and
intersection that you proved when you first learned about sets, you will find that
they usually come in pairs, the first property being the dual of the second.170 170 e.g.:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)2.4 More Vocabulary

In the next chapter, we will start heavily using diagrams, and in order to generalize
many concepts relying on diagrams, we will need a formal abstract definition of
diagrams to work with. We introduce this definition here171 and throw in a couple 171 In the rest of the book, we use the term dia-

gram to refer to both the informal pictures we
draw and the formal mathematical object de-
fined below. The context should disambiguate
the two usages, but if you are not sure, rememe-
ber that only the latter use will appear with a
hyperlink on the word that links to Definition
182.

of new concepts and their duals to keep practicing with the central idea in this
chapter.

Definition 182 (Diagram). A diagram in C is a functor F : J⇝ C where J is usually
a small or even finite category. We say that J is the shape of the diagram F.

· ·

· ·
(29)

Remark 183. Diagrams are usually represented by (partially) drawing the image of
F. While all the informal diagrams drawn up to this point can correspond to actual
formal diagrams, it is not very pertinent to highlight this correspondence in a case-
by-case basis. Indeed, the motivation behind Definition 182 is the need to abstract
away from the drawings to work in more generality. For instance, when considering
a commutative square in C, it can be helpful to view it as the image of a functor
with codomain C and domain the category 2× 2 represented in (29).

Since diagrams are defined as functors, they interact well with other functors.
For example, if F : J⇝ C is a diagram of shape J in C and G : C⇝ D is a functor,
then G ◦ F is a diagram of shape J in D. Some functors interact even more nicely
with diagrams.

my first category theory textbook 49

Definition 184. Let F : C⇝ C′ be a functor and P a property172 of diagrams. 172 This is intentionally a vague term. In Chapter
3, we will have a more formal but less general
definition of preserving and reflecting.- We say that F preserves diagrams with property P if for any diagram D : J⇝ C,

if D has property P, then F ◦ D has property P.

- We say that F reflects diagrams with property P if for any diagram D : J⇝ C, if
F ◦ D has property P, then D has property P.

Warning 185. Preserving and reflecting a property P are not dual notions. The dual
of preserving (resp. reflecting) P is preserving (resp. reflecting) the dual of P.

Example 186 (Commutativity). By drawing the objects and morphisms in the im-
age of a diagram D : J ⇝ C, we can still use Definition 99 to say whether D is
commutative or not. Since functors preserve composition, if D is commutative and
F : C ⇝ D is any functor, F ◦ D is also commutative. Indeed, if two paths in C
compose to the same morphism, then the composites of the paths after applying F
are still equal. In other words, all functors preserve commutativity. We will use this
fact many times in proofs173 by drawing a commutative diagram and applying F to 173 Without the rigor of defining the functors rep-

resented by the diagrams.all objects and morphisms to get another commutative diagram.
Commutativity is not reflected by all functors. Even if a diagram D : J⇝ C does

not commute, composing D with the unique functor into the terminal category 1
yields a (trivially) commutative diagram ⟨⟩ ◦ D : J⇝ 1.

If F : C ⇝ D is faithful, then F reflects commutativity. Let D : J ⇝ C be a
diagram and suppose F ◦ D is commutative. As in Definition 99, take a path in the
image of D of length greater than one that composes to p1 : A → B and another
path that composes to p2 : A→ B. After applying F, commutativity of F ◦D ensures
the two paths compose to the same morphism p ∈ HomD(FA, FB). Moreover, p is
the image of both p1 and p2, and since F is faithful, we conclude that p1 = p2.

The following two exercises are a quick investigation in preservation and reflec-
tion of simple properties we have seen in this chapter.

SOL Exercise 187. 1. Find an example of functor which does not preserve monomor-
phisms.174 174 We can see a morphism as a diagram of shape

2 because a functor 2 ⇝ C amounts to a choice
of a morphism in C. Thus, a functor F preserves
monomorphisms if and only if whenever f is
monic, F(f) also is.

2. Show that if f ∈ C1 is a split monomorphism, then F(f) is also a split monomor-
phism, i.e.: any functor preserves split monomorphisms.

3. State and prove the dual statement.

4. Infer that all functors preserve isomorphisms, in particular functors send isomor-
phic objects to isomorphic objects.

SOL Exercise 188. 1. Find an example of functor which does not reflect monomorphisms.175 175 A functor reflects monomorphisms if when-
ever F f is monic, f also is.

2. Show that if F is faithful, then F reflects monomorphisms.

3. State and prove the dual statement.

4. Show that if F is fully faithful, then F reflects isomorphisms.

50 ralph sarkis

We have seen how to categorify176 unions and intersections of subsets in Example 176 Categorification is an imprecise term refer-
ring to the process of casting an idea in a more
categorical language. Depending on the origi-
nal idea and the context where it is used, there
can be many ways to describe it with a categor-
ical mind. In the following two chapters, we
will spend some time categorifying several set-
theoretical notions.

181. The next set-theoretical notion we categorify is subsets. A subset I ⊆ S can
be identified with the inclusion function I ↪→ S, and since the latter is injective, we
may want to consider monomorphisms with target S to be some kind of generalized
subset. Observe however that an injection I ↣ S is not necessarily an inclusion
function. This does not matter because, in reality, we are interested in the image of
this injection. We run into another obstacle because if two injections into S have the
same image, they represent the same subset. We overcome this using the following
exercise.

Two monomorphisms related by ∼.

• •

•
m m′

i

SOL Exercise 189. Let C be a category and X ∈ C0, we define the relation ∼ on
monomorphisms with target X by

m ∼ m′ ⇔ ∃ isomorphism i, m = m′ ◦ i.

Show that ∼ is an equivalence relation.

Definition 190 (Subobject). Let C be a category, a subobject of X ∈ C0 is an equiv-
alence class of the relation ∼ defined above. We will often abusively refer to a
subobject simply with a monomorphism Y↣ X representing the class. The collec-
tion of subobjects of X is denoted SubC(X). If for any X ∈ C0, SubC(X) is a set, we
say that C is well-powered.

Example 191 (Set). Let X ∈ Set0, subobjects of X correspond to subsets of X.177 177 The notation SubSet(X) is perfect!

Indeed, any subset I ⊆ X has an inclusion function i : I ↪→ X which is injective,
hence monic. For the other direction, we can show that i : I ↣ X and j : J ↣ X
are in the same equivalence class in SubSet(X) if and only if Im(i) = Im(j).178 We 178 (⇒) If i ∼ j, then there exists a bijection f

such that i = j ◦ f . It follows that the image of j
is the image of i.

(⇐) Suppose Im(i) = Im(j), we define f : I →
J = x 7→ j−1(i(x)), where j−1 is the left inverse
of j. It is clear that i = j ◦ f and a quick compu-
tation shows f is an isomorphism with inverse
x 7→ i−1(j(x)), where i−1(x) is the left inverse of
i.

conclude that the correspondence between SubSet(X) and P(X) sends [i] to the
image of i and I ⊆ X to the equivalence class of the inclusion i : I ↪→ X.

The next exercise generalizes the poset of subsets of X (PX,⊆).

SOL Exercise 192. Let C be a category and X ∈ C0, we define the relation ≤ on SubC(X):

[m] ≤ [m′]⇔ ∃ morphism k, m = m′ ◦ k.

Show that ≤ is a well-defined partial order.

SOL Exercise 193. Show that the correspondence between PX and SubSet(X) from Ex-
ample 191 is an isomorphism of posets (PX,⊆) ∼= (SubSet(X),≤).179 179 We saw what poset isomorphisms were in Ex-

ample 165.2.

SOL Exercise 194. Show that a subobject in Cat is a subcategory.

We can use duality to obtain (for free) the notion of quotient objects.

Definition 195 (Quotients). Let C be a category and X ∈ C0, there is an equivalence
relation ∼ on epimorphisms with source X defined by

q ∼ q′ ⇔ ∃ isomorphism i, q = i ◦ q′.

my first category theory textbook 51

A quotient object (or simply quotient) of X is an equivalence class of the relation
∼ defined above.180 The collection of quotients of X is denoted QuotC(X). If for 180 We will often abusively refer to a quotient

simply with an epimorphism X↠ Y.any X ∈ C0, QuotC(X) is a set, we say that C is co-well-powered. There is a partial
order ≤ on QuotC(X) defined by

[q] ≤ [q′]⇔ ∃ morphism k, q = k ◦ q′.

The terminology for this dual notion is motivated by the following exercise.

SOL Exercise 196. Show that a quotient object of G ∈ Grp0 is a quotient group of G.

I love finding a categorical definition for something I am used to thikning of in
classical terms.181 It facilitates a better understanding of the essential components 181 This feeling led me to study more category

theory.of the classical notion, and duality can open the gates to a parallel world where we
can have just as much fun.

For now, we only played with definitions without discovering anything deep.
Some people maintain it is useless to take a categorical point of view if it does not
lead to new results. Category theorists (I presume) believe that it helps organize
our thoughts regardless of the mathematical outcomes. The rest of the book focuses
on practicing categorical thinking without necessarily demonstrating its advantages
other than its unifying/orgasitional power.

3 Limits and Colimits
3.1 Examples 53

3.2 Generalization 67

3.3 Diagram Chasing 74

The unifying power of categorical abstraction is arguably its biggest benefit. In-
deed, it is often the case that many mathematical objects or results from different
fields fit under the same categorical definition or fact. In my opinion, category the-
ory is at its peak of elegance when a complex idea becomes close to trivial when
viewed categorically, and when this same view helps link together the intuitions
behind many ideas throughout mathematics.

The next two chapters concern one particular instance of this power: universal
constructions. Along with Chapter 6, these three chapters constitute the heart of
our investigation into a philosophical idea central to category theory:182 182 We already hinted at it in Chapter 1. I am

not a good philosopher of mathematics, but I
believe this statement is a fundamental belief in
structuralism.

A mathematical object is completely determined by its relations with other objects of
the same kind.

This chapter will cover limits and colimits which are special cases of universal con-
structions. We postpone the rigorous definition of the term “universal”, so, for a
while, I recommend you try to recognize universality as the thing that all definitions
of (co)limits given below have in common.183 183 This is also a good practice for reading more

literature on category theory since “universal”
can also be used informally.

The first section presents several examples. Each of its subsection is dedicated to
one kind of limit or colimit of which a detailed example in Set is given along with a
couple of interesting examples in other categories. It is not straightforward to build
intuition about all kinds of (co)limits due to their innumerable applications. For
now, I think it is fine if you are comfortable with the intuition in Set as it transposes
well to concrete categories, but if you persist in learning category theory, you will
get to see examples with other flavors. The second section gives a formal framework
to talk about all the examples previously explored as well as a few general results.
The third section is a training ground to practice a new proof technique called
diagram chasing,184 we will cover important results there too. 184 It extends diagram paving using the tools

seen in the chapter.In the sequel, C denotes a category.

3.1 Examples

Before giving the definition of (co)limits which is very abstract, we present several
examples of how they are used. These are very interesting on their own because
they show you how a lot of things mathematicians care about in different contexts
can be seen as the same abstract construction. Still, keep in mind that, after adding

54 ralph sarkis

another level of abstraction, we will bring all these examples together as instances
of (co)limits.

Products

Given two sets S and T, the most common construction of the Cartesian product
S× T is conceptually easy: you take all pairs of elements S and T, that is,

S× T := {(s, t) | s ∈ S, t ∈ T} .

This construction requires to pick out elements in S and T, form pairs of ele-
ments, and use the set-builder notation. While these steps are straightforward
set-theoretically, it is not so clear how one would translate them into categorical
language.185 You can try to do it for the first step. 185 Only working with the objects and mor-

phisms of the category Set.
SOL Exercise 197. Inside the category Set, give a categorical definition of an element

of a set. Your definition must only refer to objects and morphisms, so it can be
generalized to other categories. Does your definition still correspond to an intuitive
notion of elements inside Poset, Grp, Cat?

If one hopes to generalize products to other categories, the construction must
only involve objects and morphisms.

Question 198. What are essential functions (morphisms in Set) to consider when studying
S× T?

Answer. Projection maps. They are functions π1 : S× T → S and π2 : S× T → T,186 186 The projections are defined by π1(s, t) = s
and π2(s, t) = t for all (s, t) ∈ S× T.but that is not enough to define the product. Indeed, there are projection maps

π′1 : S× T× S→ S and π′2 : S× T× S→ T, but S× T× S is not always isomorphic
to S× T.

Question 199. What is unique187 about S× T with the projections π1 and π2? 187 Always up to isomorphism of course.

Answer. For one, π1 and π2 are surjective, and while they are not injective, they
have an invertible-like property. Namely, given s ∈ S and t ∈ T, the pair (s, t) is
completely determined from π−1

1 (s) ∩ π−1
2 (t).

Again, in order to get rid of the references to specific elements, another point of
view is needed. Let X be a set of choices of pairs, an element x ∈ X chooses elements
in S and T via functions c1 : X → S and c2 : X → T (similar to the projections).
Now, the almost-inverse defined above yields a function

! : X → S× T = x 7→ π−1(c1(x)) ∩ π−1(c2(x)).

This function maps x ∈ X to an element in S × T that makes the same choice as
x, and it is the only one that does so. Categorically, ! is the unique morphism
in HomC(X, S × T) satisfying πi ◦ ! = ci for i = 1, 2. Later, we will see that this
property completely determines S × T. For now, enjoy the power we gain from
generalizing this idea.

https://en.wikipedia.org/wiki/Set-builder_notation

my first category theory textbook 55

Definition 200 (Binary product). Let A, B ∈ C0. A (categorical) binary product of A
and B is an object, denoted A× B, along with two morphisms πA : A× B→ A and
πB : A× B → B called projections that satisfy the following universal property188: 188 Remember that the word universal is not yet

defined, we are trying to get an idea of what it
means with these examples.

for every object X ∈ C0 with morphisms fA : X → A and fB : X → B, there is a
unique morphism ! : X → A× B making diagram (30) commute.

X

A A× B B

fA fB!

πA πB

(30)

We will often denote ! = ⟨ fA, fB⟩ and call it the pairing of fA and fB.

Example 201 (Set). Cleaning up the argument above, we show that the Cartesian
product A× B with the usual projections is a binary product in Set. To show that it
satisfies the universal property, let X, fA and fB be as in the definition. A function
! : X → A× B that makes (30) commute must satisfy

∀x ∈ X, πA(!(x)) = fA(x) and πB(!(x)) = fB(x).

Equivalently, !(x) = (fA(x), fB(x)). Since this uniquely determines !, A × B is
indeed the binary product.

Example 202. Most of the constructions throughout mathematics with the name
product can also be realized with a categorical product. Examples include the prod-
uct of groups, rings or vector spaces, the product of topologies, etc. The fact that
all these constructions are based on the Cartesian product of the underlying sets is
a corollary of a deeper result about the forgetful functors that all these categories
have in common.189 189 We show in Chapter 7 that these forgetful

functors are right adjoints and thus they pre-
serve binary products (Proposition 436).

Let us give the details for Mon, they can be easily adapted for the other categories
of algebraic objects (groups, rings, vector spaces) — this does not translate so readily
for the product of two topological spaces.

Example 203. In another flavor, let X be a topological space and O(X) be the cat-
egory of opens. If A, B ⊆ X are open, what is their product? Following Definition
200, the existence of πA and πB imply that A × B190 is included in both sets, or 190 Recall that × denotes the categorical product,

not the Cartesian product of sets.equivalently A× B ⊆ A ∩ B.
Moreover, for any open set X included in A and B (via fA and fB), X should be

included in A× B (via !).191 In particular, X can be A ∩ B (it is open by definition 191 Notice that uniqueness of ! is already given in
a posetal category.of a topology), thus A ∩ B ⊆ A × B. In conclusion, the product of two open sets

is their intersection. In an arbitrary poset, the same argument is used to show the
product is the greatest lower bound/infimum/meet.

Remark 204. Given two objects in an arbitrary category, their product does not nec-
essarily exist. Nevertheless, when it exists, one can (and we will) show that it is
unique up to unique isomorphism.192 Thus, in the sequel, we will speak of the 192 The uniqueness of the isomorphism is under

the condition that it preserves the structure of
the product. We will clear up this subtlety in
Remark 260.

product of two objects and similarly for other constructions presented in this chap-
ter. Moreover, we will often refer to the object A× B alone (without the projections)
as the product.

56 ralph sarkis

SOL Exercise 205. Let (A, R) and (B, S) be two objects in 2Rel.193 We denote R ∧ S the 193 i.e. A and B are sets and R ⊆ A × A and
S ⊆ B× B.binary relation on A× B defined by (we write the relations infix like for orders)

(a, b) R ∧ S (a′, b′)⇔ a R a′ and b S b′.

1. Show that (A× B, R ∧ S) is the product of (A, R) and (B, S) in 2Rel.

2. Show that if R and S are reflexive/transitive/antisymmetric, then so is R ∧ S.

3. Conclude that, in both Poset and Pre, the product of any two objects exists.

SOL Exercise 206. Let A and B be two sets, find their product in the category Rel.

SOL Exercise 207. Let C and D, be two categories, we defined the product category
C × D in Definition 132. Resolve the clash of notations by checking that C × D
satisfies the universal property of the categorical product of C and D.

Before reaching even more generality, it is sane to check that we can prove some
properties of the Cartesian product using the categorical definition. This would
ensure that we are not venturing in useless abstract nonsense. We prove the harder
one and leave you two easier ones as exercises.

Proposition 208. Let A, B, C ∈ C0 be such that A× B and B× C exist. If A× (B× C)
exists, then (A × B) × C exists and both products are isomorphic. In other words, the
binary product is associative.194 194 Just like the Cartesian product is associative

(up to isomorphism). The existence hypothe-
sis is not necessary in Set because the Cartesian
product of any two sets always exists.

Proof. We will show that A× (B× C) satisfies the definition of the product (A×
B)× C with projections defined below. This means (A× B)× C exists and the fact
that A× (B× C) ∼= (A× B)× C follows trivially (we defined them to be the same
object).195 195 In any case, as we will prove in Proposition

259, if you had another construction for (A ×
B)× C, it would be isomorphic to ours.

First, we need two projections πA×B : A× (B× C) → A× B and πC : A× (B×
C)→ C. In the diagram below, we show how to obtain them.196

196 We overload the notation and rely on the
source and target of the morphisms to avoid
confusionA× (B× C)

A× B B× C

A B C

πA

πB×C

πC

πA×B

πA πB πB πC

(31)

The dotted arrow πC is simply the composition πC ◦πB×C. The dotted arrow πA×B

is obtained via the property of the product A × B and the morphisms πA : A ×
(B×C)→ A and πB ◦πB×C : A× (B×C)→ B. It is the unique morphism making
(31) commute, that is, πA×B = ⟨πA, πB ◦ πB×C⟩.

Suppose there is an object X and morphisms pA×B : X → A× B and pC : X → C.
We need to find ! : X → A× (B× C) that makes (32) commute and is unique with
that property. By post-composing with the appropriate projections, we can see how
! acts from the point of view of A, B and C:

X

A× (B× C)

A× B B× C

A B C

πA

πB×C

πC

πA×B

πA πB πB πC

pA×B pC!

(32)

my first category theory textbook 57

πA ◦ ! = πA ◦ ⟨πA, πB ◦ πB×C⟩ ◦ ! = πA ◦ pA×B

πB ◦ πB×C ◦ ! = πB ◦ ⟨πA, πB ◦ πB×C⟩ ◦ ! = πB ◦ pA×B

πC ◦ πB×C ◦ ! = pC.

The last two equations tell us that πB×C ◦ ! must make (33) commute.

X

A× B A× (B× C)

B B× C C

πB×CπB

πB πC

pA×B

pC
!

(33)

Hence, by the universal property of B×C, we must have πB×C ◦ ! = ⟨πB ◦ pA×B, pC⟩.
This fact combined with the first equation tells us that ! makes (34) commute.

X

A× B

A A× (B× C) B× CπB×C

πA

pA×B

!

⟨πB◦pA×B ,pC⟩

πA

(34)

Hence, by the universal property of A× (B×C), we must have ! = ⟨πA ◦ pA×B, ⟨πB ◦
pA×B, pC⟩⟩. Notice that the two uses of universal properties ensured that we found
the unique possible choice for !.

Remark 209. This has been our first proof using diagram chasing. It is different from
diagram paving because the goal is to construct objects and morphisms that make
some diagram commute (often with a proof of uniqueness of your construction).197 197 In diagram paving, you only use objects and

morphisms that are given. One can see diagram
paving as part of diagram chasing because the
commutativity proofs are done by combining
smaller commutative diagrams.

Another unfortunate difference is that diagram chasing proofs are much harder to
typeset. On the board, this proof can be done with one big diagram on which
we point out the relevant parts at different moments in the proof. Here, we had to
draw four diagrams for this proof in order to emphasize different parts of that huge
diagram.

Here are two simpler diagram chasing exercises for you to solve. It should help
to highlight the important steps of the proof above. To show A × (B × C) is the
same thing as (A× B)× C, we showed the former satisfies the universal property
of the latter. We built the appropriate projections, and given another object with
maps to A× B and C, we showed how to construct the pairing of these maps, and
finally we showed that pairing was unique.

SOL Exercise 210. Let A, B ∈ C0. If A× B exists, then B× A exists and both products
are isomorphic. In other words, the binary product is commutative.198 198 Just like the Cartesian product is commuta-

tive (up to isomorphism).

58 ralph sarkis

This statement is transparent in the definition of binary products because chang-
ing A for B in Definition 200 has no impact. Still, proving it is more rigorous.

SOL Exercise 211. Let 1 be the terminal object in C. Show that for any A ∈ C0, the
product of 1 and A is A.199 199 This property is expected because in Set, 1 =

{∗} and

{∗} × A = {(∗, a) | a ∈ A} ∼= A.
To generalize the categorical product to more than two objects, one can, for in-

stance, define the product of a finite family of sets recursively with the binary prod-
uct.200 This is well-defined thanks to the associativity and commutativity of ×, but 200 For a family {X1, . . . , Xn} ⊆ C0:

n

∏
i=1

Xi =

{
X1 n = 1(

∏n−1
i=1 Xi

)
× Xn n > 1

this is not enough to get the infinite case. In contrast, generalizing the universal
property illustrated in (30) yields a simpler definition that works even for arbitrary
families. Instead of having only two objects and two projections, we will have a
families of objects and projections indexed by an arbitrary set I.

Definition 212 (Product). Let {X}i∈I be an I–indexed family of objects of C. The
product of this family is an object ∏i∈I Xi along with projections π j : ∏i∈I Xi → Xj

for all j ∈ I satisfying the following universal property: for any object X with
morphisms

{
f j : X → Xj

}
j∈I , there is a unique morphism ! : X → ∏i∈I Xi making

(35) commute for all j ∈ I.201 201 Analogously to the binary case, we may write
! = ⟨ f j⟩j∈I or, in the finite case, ! = ⟨ f1, . . . , fn⟩.

X

∏i∈I Xi Xj

!
f j

π j

(35)

Warning 213. In a lot of cases, the arbitary product will be a straightforward gen-
eralization of the binary product,202 but that is not true in all cases. For instance, 202 e.g. in Set, the Cartesian product of an ar-

bitrary family of sets is still the set of ordered
tuples (instead of pairs) of elements in the sets.

in the category of open subsets of a topological space, the arbitrary product is not
always the intersection. This is because arbitrary intersections of open sets are not
necessarily open. To resolve this problem, it suffices to take the interior of the
intersection which is open by definition.

Commutativity and now associativity of categorical products are true by defi-
nition.203 Here are three more properties of Cartesian products that generalize to 203 We mean the order of the Xis is not taken

into account for the universal property. As we
did for binary products, we will make this more
rigorous in ...

categorical products.

SOL Exercise 214 (NOW!). Let { fi : Xi → Yi}i∈I be a family of morphisms in C, show
that there is a unique morphism ∏i∈I fi : ∏i∈I Xi → ∏i∈I Yi making the following
square commute for all j ∈ I.

∏i∈I Xi ∏i∈I Yi

Xj Yj

∏i∈I fi

π jπ j

f j

(36)

We call ∏i∈I fi the product of the fis. In the finite case, we write f1 × · · · × fn.

In Set, the function ∏i∈I fi acts on tuples in ∏i∈I Xi by applying fi to the ith
coordinate for every i.

my first category theory textbook 59

SOL Exercise 215. Let X, Y and {Xi}i∈I be objects of C such that ∏i∈I Xi exists. For any
family fi : X → Xi and g : Y → X show that ⟨ fi⟩i∈I ◦ g = ⟨ fi ◦ g⟩i∈I . Conclude that
for families { fi : Xi → Yi}i∈I and {gi : Zi → Xi}i∈I , (∏ fi) ◦ (∏ gi) = ∏(fi ◦ gi).204 204 It may be useful to restate this in the binary

case. For any f : X → Y, f ′ : X′ → Y′, g : Z →
X and g′ : Z′ → X′, we have

(f × f ′) ◦ (g× g′) = (f ◦ g)× (g ◦ g′).

As a corollary, if C has all binary products, we
get a functor C×C⇝ C sending (X, Y) to X×Y
and (f , g) to f × g.

A family of objects in C is also called a discrete diagram because it corresponds
to a functor from a discrete category (one with no non-identity morphisms) into
C.205 The product of a family of objects is called the limit of the corresponding

205 Recall that a diagram is a functor into C (Def-
inition 182).

diagram. The big takeaway from last chapter is that each time we read a new
definition, it is worth to dualize it. Thus, we ask: what is the colimit of a discrete
diagram?

Coproducts

Definition 216 (Coproduct). Let {X}i∈I be an I–indexed family of objects in C,
its coproduct is an object, denoted ⨿i∈I Xi (or X1 + X2 in the binary case), along
with morphisms κ j : Xj → ⨿i∈I Xi for all j ∈ I called coprojections satisfying the
following universal property: for any object X with morphisms

{
f j : Xj → X

}
j∈I ,

there is a unique morphism ! : ⨿i∈I Xi → X making (37) commute for all j ∈ I.206 206 We may denote ! = [f j]j∈I or, in the finite
case, ! = [f1, . . . , fn]. We call it the copairing
of { f j}j∈I .Xj ⨿i∈I Xi

X

κ j

f j
! (37)

Let us find out what coproducts of sets are.

Example 217 (Set). Let {Xi}i∈I be a family of sets, first note that if Xj = ∅ for j ∈ I,
then there is only one morphism Xj → X for any X.207 In particular, (37) commutes 207 Because ∅ is initial.

no matter what ⨿i∈I Xi and X are. Therefore, removing Xj from this family does
not change how the coproduct behaves, hence no generality is loss from assuming
all Xis are non-empty.

Second, for any j ∈ I, let X = Xj, f j = idXj and for any j′ ̸= j, let f j′ be any
function in Hom(Xj′ , Xj).208 Commutativity of (37) implies κ j has a left inverse 208 One exists because Xj is non-empty.

because ! ◦ κ j = f j = idXj , so all coprojections are injective.
Third, we claim that for any j ̸= j′ ∈ I, Im(κ j) ∩ Im(κ j′) = ∅. Let X = {0, 1},

f j and f j′ be the constant functions sending everything to 0 and 1 respectively. The
universal property implies that

Im
(
! ◦ κ j

)
= {0} ̸= {1} = Im(! ◦ κ j′),

hence for any x ∈ Xj and x′ ∈ Xj′ , we have κ j(x) ̸= κ j′(x′).
In summary, the previous points say that ⨿i∈I Xi contains distinct copies of the

images of all coprojections. Furthermore, the κ js being injective, their image can be
identified with the Xjs to obtain209 209 The symbol ⊔ denotes the disjoint union of

sets.⊔
i∈I

Xi ⊆⨿
i∈I

Xi.

60 ralph sarkis

For the converse inclusion, in (37), let X be the disjoint union and the f js be the
inclusions. Assume there exists x in the R.H.S. that is not in the L.H.S., then we can
define !′ : ⨿i∈I Xi →

⊔
i∈I Xi that only differs from ! at x. Since x is not in the image

of any coprojection, the diagrams still commute and this contradicts the uniqueness
of !.

In conclusion, the coproduct in Set is the disjoint union and the coprojections
are the inclusions.210 210 We recover the intuition for why empty sets

can be ignored. A more general fact is proven in
Exercise 221.Remark 218. If this example looks more complicated than the product of sets, it is

because we started knowing nothing concrete about coproducts of sets and gradu-
ally discovered what properties they had using specific objects and morphisms we
know exist in Set. In contrast, we knew what products of sets were, and we just
had to show they satisfied the universal property.211 211 One might argue that coming up with this

universal property was the hard part in that
case.

In general, the hard part is to find what construction satisfies a universal prop-
erty, proving it does is easier.

Examples 219. In the category of open sets of a space (X, τ), let {Ui}i∈I be a family
of open sets and suppose ⨿i Ui exists. The coprojections yield inclusions Uj ⊆ ⨿i Ui

for all j ∈ I, so ⨿i Ui must contain all Ujs and thus ∪iUi. Moreover, in (37), letting
f j be the inclusion Uj ↪→ ∪iUi for all j ∈ I,212 the existence of ! yields an inclusion 212 These morphisms are in O(X) because ∪iUi

is open.⨿i Ui ⊆ ∪iUi. We conclude that the coproduct in this category is the union of open
sets. In an arbitrary poset, the same argument is used to show the coproduct is the
least upper bound/supremum/join.

In Vectk, the coproduct, also called the direct sum, is defined by213 213 Here, the symbol ∏ denotes the Cartesian
product of the Vis as sets. The categorical prod-
uct of vector spaces is also the direct sum, where
the projections are the usual ones.⨿

i∈I
Vi =

⊕
i∈I

Vi :=

{
v⃗ ∈∏

i∈I
Vi | v⃗i ̸= 0 for finitely many i’s

}
,

where κ j : Vj ↪→ ⨿i Vi sends v to κ j(v) ∈ ∏i Vi satisfying κ j(v)j = v and κ j(v)j′ = 0
whenever j ̸= j′. To verify this, let

{
f j : Vj → X

}
j∈I be a family of linear maps. We

can construct ! by defining it on basis elements of the direct sum, which are just
the basis elements of all Vjs seen as elements of the sum (via the coprojections).214 214 It is necessary to require finitely many non-

zero entries, otherwise the basis of the coprod-
uct would not be the union of all bases of the
Vjs.

Indeed, if b is in the basis of Vj, we let !(κ j(b)) = f j(b). Extending linearly yields a
linear map ! : ⨿i Vi → X. Uniqueness is clear because if h : ⨿i Vi → X differs from
! on one of the basis elements, it does not make (37) commute.

SOL Exercise 220. Let A and B be two sets, show that their coproduct exists in the
category Rel and find what it is.

SOL Exercise 221. Show that products are dual to coproducts, namely, if a product of
a familiy {Xi}i∈I exists in C, then this object and the projections are the coproduct
of this family and the coprojections in Cop and vice-versa. Conclude that you can
define the coproduct of morphisms dually to Exercise 214, we denote them ⨿i∈I fi

or f1 + · · ·+ fn in the finite case.

Applying the duality between products and coproducts to Proposition 208 and
Exercises 210 and 211, we get the following results.

my first category theory textbook 61

Corollary 222 (Dual). Taking binary coproducts is commutative and associative, and if ∅
is initial, then A + ∅ ∼= A.215 215 While in Set, we have A × ∅ ∼= ∅, this

does not generalize to all categories with binary
products and an initial object, e.g. Vectk .SOL Exercise 223. Dually to Exercise 215, show that if X, Y and {Xi}i∈I are objects of C

such that ⨿i∈I Xi exists, then for any family fi : Xi → X and g : X → Y show that
g ◦ [fi]i∈I = [g ◦ fi]i∈I .

SOL Exercise 224. Let C have a terminal object 1. Show that the assignment X 7→ X + 1
is functorial, i.e. define the action of (−+ 1) on morphisms and show it satisfies
the axioms of a functor.216 216 We call (−+ 1) the maybe functor.

In a very similar way to the product and coproduct, we will define various con-
structions in Set.217 217 We will follow more closely the section on co-

products where we started with the definition
of the (co)limit and then detailed an example in
Set.Equalizers

We briefly mentioned that a product (resp. coproduct) is a limit (resp. colimit) of a
discrete diagram. The rest of the examples before generalizing will be (co)limits of
small diagrams that contain non-identity morphisms.

Definition 225 (Fork). A fork in C is a diagram of shape (38) or (39).

O A Bo f

g
(38) A B O

f

g
o (39)

These are dual notions, so we prefer to call (39) a cofork. If (38) commutes then
f ◦ o = g ◦ o,218 and we say that o equalizes f and g. If (39) commutes, then 218 Recall that commutativity does not make par-

allel morphisms equal.o ◦ f = o ◦ g, and we say that o coequalizes f and g.

Definition 226 (Equalizer). Let A, B ∈ C0 and f , g : A → B be parallel morphisms.
The equalizer of f and g is an object E and a morphism e : E → A satisfying
f ◦ e = g ◦ e with the following universal property: for any morphism o : O → A
equalizing f and g, there is a unique ! : O→ E making (40) commute.219 219 Try to look for a common pattern in this def-

inition and the definition of a product (both are
instances of limits).O

E A B

o!

e

f

g

(40)

In other words, e is a morphism that equalizes f and g, and every other o that
equalizes f and g factors through e uniquely. A common notation for e is eq(f , g).
There is also a straightforward generalization to equalizers of more than two mor-
phisms.220 220 If { fi}i∈I is a family of parallel morphisms,

their equalizer is a morphism e ∈ C1 such that

∀i, j ∈ I, fi ◦ e = f j ◦ e,

and every o with this property factors through e
in a unique way.

Example 227 (Set). Let f , g : A → B be two functions and suppose their equalizer
exists and it is e : E → A. By associativity, for any h : O → E, the composite e ◦ h is
a candidate for o in diagram (40) because f ◦ (e ◦ h) = g ◦ (e ◦ h). What is more, if
h′ is such that e ◦ h = e ◦ h′, then h = h′ or it would contradict the uniqueness of !.
We conclude that e is monic/injective.221 221 This argument was independent of the cate-

gory, hence we can conclude that an equalizer
of parallel morphisms is always monic.

62 ralph sarkis

This implies E can be identified with its image under e. Since f ◦ e = g ◦ e, the
image of e is contained in the subset {a ∈ A | f (a) = g(a)}. Now, by the universal
property of the equalizer, letting O be this subset and o be the inclusion, there is an
injection222 ! : {a ∈ A | f (a) = g(a)} ↪→ E, thus both sets are equal. In conclusion, 222 The fact that ! is an injection comes from the

fact that the inclusion o is an injection and e ◦ ! =
o.

the equalizer of two parallel functions is the subset E in which they coincide and
e : E ↪→ A is the inclusion.

Examples 228. In a posetal category, hom-sets are singletons, so it must be the case
that f = g whenever f and g are parallel. Therefore, any o : O → A satisfies
f ◦ o = g ◦ o. Written using the order notation, the universal property is then
equivalent to the fact that E ≤ A and O ≤ A implies O ≤ E. In particular, if O = A,
then A ≤ E, so A = E by antisymmetry.

In Ab, Ring or Vectk, for the same reason that the Cartesian product of the un-
derlying sets is the underlying set of the product,223 the construction of equalizers 223 We explain this in Chapter 7.

is as in Set. However, since each of these categories have a notion of additive inverse
for morphisms, the equalizer of f and g has a cooler name, that is, ker(f − g).224 224 The equalizer of f and g is the sub-

group/subring/subspace of A where f and g
are equal, or equivalently, where f − g is 0
(when f − g and 0 are defined).

Definition 229 (Idempotents). A morphism f : A → A ∈ C1 is called idempotent
when f ◦ f = f . It is called split idempotent if there exist morphisms s : E → A
and r : A→ E such that s ◦ r = f and r ◦ s = idE.225 225 We can show that split idempotents are idem-

potent because

f ◦ f = s ◦ r ◦ s ◦ r = s ◦ idE ◦ r = f .
Proposition 230. An idempotent morphism f : A → A ∈ C1 is split idempotent if and
only if the equalizer of idA and f exists.

Proof. (⇒) Let f = s ◦ r be such that r ◦ s = idE, we claim that s is the equalizer.
First, we can check that s equalizes idA and f because f ◦ s = s ◦ r ◦ s = s ◦ idE =

s = idA ◦ s. Next, given o : O → A that also equalizes idA and f , we need to find a
morphism ! that makes (41) commute. Its uniqueness is given by s being monic (it
has a left inverse). Noticing that o = f ◦ o = s ◦ r ◦ o, we find ! = r ◦ o.

O

E A A
fs

o!
idA

(41)

(⇐) If e : E → A is the equalizer of f and idA, then since f equalizes f and
idA, there exists ! : A → E such that e ◦ ! = f . By monicity of e, we find that
e ◦ (! ◦ e) = f ◦ e = e implies ! ◦ e = idA, so f is a split idempotent (let s = e and
r = !).

The first two examples had a relatively well-known instantiation in the category
Set, namely, products are Cartesian products and coproducts are disjoint unions.
The notion of equalizer of two functions, while just as intuitive as the others,226 is 226 The equalizer of f , g : A → B is the subset of

A where f and g are equal.less common in “classical” set theory. However, it still leads to a nice categorical
definition of fiber.

SOL Exercise 231. Let f : A → B be a function and y ∈ B, the fiber of y (under f) is
{x ∈ A | f (x) = y}.227 Give a categorical definition of fibers that does not rely on 227 Fiber is just a synonym for preimage (usually)

taken at a single point.the special case of Set. Just like in Exercise 197, you should only refer to objects
and morphisms. In particular, you can only use the categorical notion of elements
(Definition 481). Does your definition still correspond to an intuitive notion of fibers
inside Poset, Grp, Cat?

The equalizer of f and g is the limit of the diagram containing only the two
parallel morphisms, we define its colimit in the next section.

my first category theory textbook 63

Coequalizers

Definition 232 (Coequalizer). Let A, B ∈ C0 and f , g : A → B be parallel mor-
phisms. The coequalizer of f and g is an object D and a morphism d : B → D
satisfying d ◦ f = d ◦ g with the following universal property: for any morphism
o : B→ O coequalizing f and g, there is a unique ! : D → O making (42) commute.

A B D

O

f

g
d

o ! (42)

In other words, d coequalizes f and g, and every other o that coequalizes f and g
factors through d uniquely. A common notation for d is coeq(f , g), and there is also
a straightforward generalization to more than two morphisms.

Example 233 (Set). Let f , g : A → B be two functions and suppose d : B → D is
their coequalizer. Similarly to the dual case, one can show that d is epic/surjective.
Since d ◦ f = d ◦ g, for any b, b′ ∈ B,(

∃a ∈ A, f (a) = b and g(a) = b′
)
=⇒ d(b) = d(b′). (∗)

Denoting by ∼ the relation between two elements of B defined in the L.H.S. of (∗),
the implication becomes b ∼ b′ =⇒ d(b) = d(b′). Note that ∼ is not necessarily
an equivalence relation but = is, thus, the converse implication does not always
hold.228 228 For instance, when b ∼ b′ ∼ b′′, d(b) = d(b′′),

but it might not be the case that b ∼ b′′.Consequently, we consider the equivalence relation generated by ∼,229 denoted
229 In this case, it is simply the transitive closure.by ≃. As noted above, the forward implication b ≃ b′ =⇒ d(b) = d(b′) still holds.

For the converse, in (42), let O := B/≃ and o : B → B/≃ be the quotient map.
Post-composing with ! yields

d(b) = d(b′) =⇒ o(b) = o(b′) =⇒ b ≃ b′.

The equivalence b ≃ b′ ⇔ d(b) = d(b′) and the fact that d is surjective means we
can identify D with the quotient B/≃ and d : B→ D with the quotient map.230 230 You can give the isomorphism D ∼= B/≃.

Examples 234. In a posetal category, an argument dual to the one for equalizers
shows the coequalizer of f , g : A→ B is B.

In Ab, Ring or Vectk, let f , g : A→ B be homomorphisms and suppose d : B→
D is their coequalizers. Consider the homomorphism f − g, since d coequalizes f
and g, d ◦ (f − g) = d ◦ f − d ◦ g = 0, or equivalently, Im(f − g) ⊆ ker(d). Now,
consider diagram (43) as an instance of (42), where q is the quotient map.231 231 It is commutative because q ◦ (f − g) = 0 by

definition of q.

A B D

B/Im(f − g)

f

g
d

q ! (43)

We claim that ! has an inverse, implying that D ∼= B/Im(f − g).232 Indeed, for 232 This is not enough to say that B/Im(f − g)
with the quotient map is the coequalizer, we
leave you the task to complete the proof using
this isomorphism that crucially satisfies ! ◦ d =
q.

64 ralph sarkis

[x] ∈ B/Im(f − g), we must have

!−1([x]) = !−1(q(x)) = !−1(!(d(x))) = d(x),

and it is only left to show !−1 is well-defined because the inverse of a homomor-
phism is a homomorphism. This follows because if [x] = [x′], then there exists
y ∈ Im(f − g) such that x = x′ + y, so

!−1(x) = d(x) = d(x′ + y) = d(x′) + d(y) = d(x′) + 0 = !−1(x′).

In the special case that g is the constant 0 map, B/Im(f) is called the cokernel of f ,
denoted coker(f).

SOL Exercise 235. Show that an idempotent morphism f : A→ A ∈ C1 is split idempo-
tent if and only if the coequalizer of f and idA exists.

SOL Exercise 236. Try to dualize the definition of fibers from Exercise 231. What goes
wrong?

Pullbacks

Definition 237 (Cospan). A cospan in C comprises three objects A, B, C and two
morphisms f and g as in (44).233 233 Just like forks, coforks and spans that we in-

troduce later, cospan is simply a name that we
give to a certain shape of diagram that occurs
quite often.A C B

f g
(44)

Definition 238 (Pullback). Let A C B
f g

be a cospan in C. Its pullback is an
object A×C B along with morphisms pA : A×C B → A and pB : A×C B → B such
that f ◦ pA = g ◦ pB and the following universal property holds: for any object X
and morphisms s : X → A and t : X → B satisfying f ◦ s = g ◦ t, there is a unique
morphism ! : X → A×C B making (45) commute.234 234 The⌟ symbol inside the square is a standard

convention to specify that a square is not only
commutative, but also a pullback square. Some
authors call such a square cartesian, but this ad-
jective has too many different meanings in cat-
egory theory in my opinion, so we will not use
it.

X

A×C B B

A C
f

gpA

pB

s

t

!

⌟
(45)

We call pA the pullback of g along f and sometimes denote it f ∗(g). Symmetrically,
pB is the pullback of f along g, denoted g∗(f). A drawback of the notation A ×C B is that it

does not refer to the morphisms f and g which
are essential in the definition. An alternative no-
tation is f ×C g (I learned about it here). An ar-
gument supporting this notation is in Exercise
333.

Example 239 (Set). Let A C B
f g

be a cospan in Set and suppose that its pull-

back is A A×C B B
pA pB . Observe that pA and pB look like projections, and in

fact, by the universality of the product A× B, there is a map h : A×C B → A× B
such that h(x) = (pA(x), pB(x)) ((46) commutes). Consider the image of h, if

https://mattecapu.github.io/ct-zulip-archive/stream/229199-learning:-questions/topic/Morphism-based.20pullback.20notation.3F.html

my first category theory textbook 65

(a, b) ∈ Im(h), then there exists x ∈ A×C B such that pA(x) = a and pB(x) = b.
Moreover, the commutativity of the square in (46) implies f (a) = g(b), hence

A×C B B

A× B

A C

pA

f

pB

g

h

πA

πB

(46)

Im(h) ⊆ {(a, b) ∈ A× B | f (a) = g(b)}.

Now, let X be the R.H.S., and s = πA|X and t = πB|X be the projections to A and B
respectively restricted to X ⊆ A× B. Our construction ensures f ◦ s = g ◦ t hence
there is a unique ! : X → A ×C B satisfying pA ◦ ! = πA|X and pB ◦ ! = πB|X .
Viewing h as going in the opposite direction to !,235 we derive for any (a, b) ∈ X,236 235 We just saw that the image of h is contained in

X, so we can see h as a function h : A×C B→ X.
236 We use the fact that πA ◦ h ◦ ! = pA ◦ ! and
similarly for B.(h ◦ !)(a, b) = (pA(!(a, b)), pB(a, b)) = (πA(a, b), πB(a, b)) = (a, b),

thus ! has a left inverse and is injective. Assume towards a contradiction that it
is not surjective, then let y ∈ A ×C B not be in the image of ! and denote x =

!(pA(y), pB(y)). Define !′ as acting exactly like ! except on (pA(y), pB(y)) where
it goes to y instead of x. This ensure that !′ still makes the diagram commute,
contradicting the uniqueness of !.

As a particular case, when one function in the cospan is an inclusion, say g :
B ↪→ C, the pullback is the preimage of B under f since237 237 This can be seen as a generalization of the

fibers defined in Exercise 231: seeing an element
of C as a function c : 1 → C, the fiber f−1(c) is
the pullback of c along f .{(a, b) ∈ A× B | f (a) = g(b) = b} ∼= {a | f (a) ∈ B} = f−1(B) ⊆ A.

You can also check that pA is the inclusion f−1(B) ↪→ A and pB is f restricted
to f−1(B). As a particular case of that, if the cospan consists of two inclusions
A ↪→ C ←↩ B, then its pullback is the intersection A ∩ B with pA and pB being the
inclusions.

A ∩ B B

A C

⌟

Examples 240. In a posetal category, the commutativity of the square in (45) does
not depend on the morphisms, thus the universal property is equivalent to the
property of being a product.

The composition of relations R and S can be defined using pullbacks in Set.
Given relations R ⊆ X × Y and S ⊆ Y× Z, we can restrict the projections to R and
S to obtain (47). Then, taking the pullback of the cospan in the middle and using
the characterization of the pullback in Set from Example 239, we obtain

R S

X Y Z

πX πY πY πZ (47)

R×Y S =
{
((x, y), (y′, z)) ∈ R× S | y = y′

}
.

Observe in (48) that we have functions from R ×Y S to X and Z: πX ◦ pR and
πZ ◦ pS. Thus, by the universal property of the product X × Z, there is a function
! : R×Y S → X × Z. After a bit of computations, recalling that pR((x, y), (y′, z)) =
(x, y) and pS((x, y), (y′, z)) = (y′, z), we find that the image of ! is precisely the
composite relation238 238 Our argument here heavily relies on working

with sets and functions, but there is a way to
generalize relations in other nice enough cate-
gories using this idea.S ◦ R = {(x, z) | ∃y, (x, y) ∈ R, (y, z) ∈ S}.

66 ralph sarkis

R×Y S

R S

X Y Z

πX
πY πY

πZ

pR pS⌟

(48)

SOL Exercise 241. Let f : X → Y be a morphism in C. Show f is monic if and only if
the square in (49) is a pullback.239 239 This result and its dual will sometimes be

used to treat monomorphisms (resp. epimor-
phisms) as limits (resp. colimits). See e.g. Ex-
ercise 264 where you will show that monomor-
phisms are preserved by pullback preserving
functors (see Definition 262).

X X

X Y

idX

f

idX

f
⌟ (49)

SOL Exercise 242. Supposing (50) commutes, show that if the right square is a pullback
and i and j are isomosphisms, then the rectangle is a pullback.240 240 i.e. X along with h and pB ◦ i is a pullback of

the cospan

Y
f ◦j−→ C

g←− B.X A×C B B

Y A C
f

gpA

pB

⌟

i

j

h (50)

Supposing (51) commutes, show that if the left square is a pullback and i and j are
isomorphisms, then the rectangle is a pullback.

A×C B B X

A C Y
f

gpA

pB

⌟
h

i

j

(51)

When dualizing products and equalizers, the shape of the diagram did not
change. Indeed, reversing all morphisms in a discrete diagram gives back a discrete
diagram, and reversing two parallel morphisms yields two parallel morphisms.
However, the opposite of a cospan is a span.

Pushouts

Definition 243 (Span). A span in C comprises three objects A, B, C and two mor-
phisms f and g as in (52).

A C B
f g

(52)

Definition 244 (Pushout). Let A C B
f g

be a span in C. Its pushout is an object,
denoted A +C B, along with morphisms kA : A → A +C B and kB : B → A +C B
such that kA ◦ f = kB ◦ g and the following universal property holds: for any object
X and morphisms s : A→ X and t : B→ X satisfying s ◦ f = t ◦ g, there is a unique
morphism ! : A +C B→ X making (53) commute.241

241 The ⌜ symbol is a standard convention to
specify that the square is not only commutative,
but also a pushout square.

my first category theory textbook 67

C B

A A +C B

X

f

g

kA

kB

s

t

!

⌟

(53)

We call kA the pushout of g along f and sometimes denote it f ∗(g). Symmetrically,
kB is the pushout of f along g, denoted g∗(f).

Example 245 (Set). Let A C B
f g

be a span in Set and suppose its pushout is

A A +C B B
kA kB . Similarly to above, observe that kA and kB are like coprojections,

so there is a unique map ! : A + B → A +C B such that !(a) = kA(a) and !(b) =

kB(b). Furthermore, for any c ∈ C, !(f (c)) = !(g(c)), thus

∃c ∈ C, f (c) = a and g(c) = b =⇒ !(a) = !(b).

This is very similar to what happened for coequalizers and after working everything
out, we obtain that ! : A + B→ A +C B is the coequalizer of κA ◦ f and κB ◦ g. This
is a general fact that does not only apply in Set but in every category with binary
coproducts and coequalizers.

As a particular case, if C = A ∩ B and f and g are simply inclusions, then
A +C B = A ∪ B (the non-disjoint union).

SOL Exercise 246. Show that if (54) is a pushout square, then d is the coequalizer of f
and g. State and prove the dual statement.

A B

B D

f

g

d

d

⌟

(54)

Example 247 (Rewriting). The categorical approach to graph rewriting is full of uses
of pushouts. In this example, we will try to give a flavor of a particular method
called double-pushout rewriting (DPO) in an almost trivial setting using words
instead of graphs. □.

Just as we defined products and coproducts for more than two objects, and equal-
izers and coequalizers for more than two morphisms (Footnote 220), we could de-
fine pullbacks (resp. pushouts) of multiple morphisms with the same target (resp.
source). However, it starts to get messy at this point, so we will abstract away from
specific examples of (co)limits.242 242 There is a slick way of doing arbitrary pull-

backs and pushouts (as opposed to the binary
ones) that we explore in Exercise 333.

3.2 Generalization

There exists many other examples of (co)limits but these six examples give quite
a good idea of what it is to be a limit or colimit. More precisely, we will see

https://en.wikipedia.org/wiki/Double_pushout_graph_rewriting

68 ralph sarkis

in Theorem 277 and Exercise 284 that any limit can be built out of products and
equalizers or pullbacks and a terminal object. Dually, we can build colimits out of
coproducts and coequalizers or pushouts and an initial object.

Let us try to informally spell out the general pattern in the definitions of each
example.

• We start with a shape for a diagram D (e.g. a discrete diagram, two parallel
morphisms, a span, a cospan, etc.).

• The limit (resp. colimit) of D is an object L along with morphisms from L to
every object in the diagram (resp. in the opposite direction) such that combining
D with these morphisms yields a commutative diagram.

• These morphisms satisfy a universal property. For any object L′ with morphisms
from L′ to every object in the diagram (resp. in the opposite direction) that
commute with D, there is a unique ! : L′ → L (resp. L→ L′) such that combining
all the morphisms with D yields a commutative diagram.

We have already formalized the first step when we defined diagrams in Definition
182. For the second and third step, notice that the morphisms given for L and L′

have the same conditions, they form what we call a cone (resp. cocone).

Definitions

We start by formalizing limits.

Definition 248 (Cone). Let F : J⇝ C be a diagram. A cone from X to F is an object
X ∈ C0, called the tip, along with a family of morphisms {ψY : X → F(Y)} indexed
by objects Y ∈ J0 such that for any morphism a : Y → Z in J1, F(a) ◦ ψY = ψZ, i.e.
diagram (55) commutes.

X

F(Y) F(Z)

ψY ψZ

F(a)

(55)

Often, the terminology cone over F is used.

Next, the fact that the morphism ! keeps everything commutative can be gener-
alized. We say that ! is a morphism of cones.

Definition 249 (Morphism of cones). Let F : J ⇝ C be a diagram and {ψY : A →
F(Y)}Y∈J0 and {ϕY : B → F(Y)}Y∈J0 be two cones over F. A morphism of cones
from A to B is a morphism g : A → B in C1 such that for any Y ∈ J0, ϕY ◦ g = ψY,
i.e. (56) commutes.

A B

F(Y)

g

ψY ϕY
(56)

my first category theory textbook 69

After verifying that morphisms can be composed, the last two definitions give
rise to the category of cones over a diagram F which we denote Cone(F). Finally,
the universal property can be stated in terms of cones, thus giving the general
definition of a limit. Indeed, the limit of a diagram F is a cone L over F such that
for every cone L′ over F, there is a unique cone morphism ! : L′ → L called the
mediating morphism. Equivalently, L is the terminal object of Cone(F).

Definition 250 (Limit). Let F : J⇝ C be a diagram, the limit of F, if it exists, is the
terminal object of Cone(F). It is denoted limJF or limF.

Remark 251. Often, limF also designates the tip of the cone as an object in C rather
than the whole cone.243 We may also refer to the whole cone as the limit cone. 243 This can sometimes be a source of confusion

because many authors omit parts of the proof
involving the rest of the cone, and the reader is
expected to reconstruct the missing parts.

Examples 252. In the previous section, we gave three examples of limits: products
are limits of discrete diagrams, equalizers are limits of diagrams with two parallel
morphisms, and pullbacks are limits of cospans. We let you verify the details, and
we add to this list three examples in increasing order of complexity.

1. Consider an empty diagram in C, that is, the functor ∅ from the empty category
to C. A cone over ∅ is an object X ∈ C0, the tip, and nothing else as there are
no objects in the diagram. Consequently, a morphism in Cone(∅) is simply a
morphism in C between the tips, so Cone(∅) is the same as the original category
C and lim∅ is the terminal object of C if it exists.244 244 Equivalently, we can say that the terminal ob-

ject is the product of an empty family.
2. Given a group G, recall from Example 126.7 that a G–set can be seen as a diagram

in Set, i.e. a functor BG ⇝ Set. We claim that the limit of this diagram is the
set Fix(S) of fixed points of the action (an element s of a G–set is a fixed point if
g · s = s).245 Let F : BG⇝ Set be a G–set with F(∗) = S, a cone over F is a set P 245 Recall that the limit of two parallel mor-

phisms was called an equalizer. In this example,
we are taking the limit of several parallel mor-
phisms. Thus, one can also see the limit of F as
the generalized equalizer of all the morphisms
g · − with g ∈ G.

along with a function p : P→ S such that for any g ∈ G, (57) commutes.

P

S S

p p

F(g)=g·−

(57)

We infer from this diagram that the image of p is contained in the set of fixed
points.246 Therefore, p factors uniquely through the inclusion Fix(S) ↪→ S. We 246 For any x ∈ P, we have g · p(x) = p(x).

conclude that the cone formed by Fix(S) ↪→ S is the limit cone.

3. Let x denote an indeterminate variable and k be a field, k[x] denotes the ring of
polynomials over x.247 We will show that kJxK, the ring of formal power series 247 In Chapter 6, we will describe a nice categori-

cal definition of k[x], but, for now, let us assume
you know what polynomials are and how they
can be added and multiplied together. You can
skip this example if you are not familiar with
rings.

over x, can be defined as a limit.

Let I = ⟨x⟩ be the ideal generated by x, it contains all the polynomials with no
constant terms, and denote In = ⟨xn⟩. In the sequel, we view elements of k[x]/In

as polynomials with degree at most n− 1.248 The following three key properties 248 More accurately, k[x]/In contains equivalence
classes of polynomials, but their representatives
are exactly the polynomials of degree at most
n− 1. Since I0 = k[x], the quotien k[x]/I0 is the
trivial ring, i.e. the zero object in Ring.

are satisfied (we leave the proofs to the interested readers).

a) For any n ≤ m ∈N and p ∈ k[x]/Im, forgetting about all terms in p of degree
at least n yields a ring homomorphism πm,n : k[x]/Im → k[x]/In.249

249 Note that πm,m is the identity.

https://en.wikipedia.org/wiki/Formal_power_series#Ring_structure

70 ralph sarkis

b) For any n ∈ N, we can do the same thing for power series to obtain a homo-
morphism π∞,n : kJxK→ k[x]/In.

c) Any composition of the homomorphisms above can be seen as a single ho-
momorphism above. Namely, ∀n ≤ m ≤ l ∈N∪∞,

πm,n ◦ πl,m = πl,n.

Consider the posetal category (N,≥), a) and c) imply that F(n) := k[x]/In and
F(m ≥ n) := πm,n defines a functor F : (N,≥) → Ring. This is the diagram
represented in (58).

· · · k[x]/In · · · k[x]/I2 k[x]/I 0
πn,n−1 π2,1 π1,0 (58)

Now, using b) and c), we see that kJxK along with {π∞,n}n∈N is a cone over
the diagram F. It is in fact the terminal cone. Let {pn : R → k[x]/In}n∈N be
another cone over F and ! : R → kJxK a morphism of cones. By commutativity,
for any m ≤ n, the coefficients for xm of !(r) and pn(r) must agree. Now, by
commutativity of the cone {pn}n∈N, pn(r) and pn−1(r) have the same coefficients
except for xn, thus we can compactly define ! by

!(r) := p0(r) + ∑
n>0

(pn(r)− pn−1(r)).

This completely determines !, so it is unique.250 250 Existence follows from the same equation.

The construction of this diagram from quotienting different powers of the same
ideal is used in different contexts, it is called the ring completion of k[x] with
respect to I. For instance, one can define the p–adic integers with base ring Z

and the ideal generated by p for any prime p.

Codefinitions

Put simply, a colimit in C is a limit in Cop. I suggest you spend a bit of time
trying to dualize all of the previous section on your own, but it is done below for
completeness.

Definition 253 (Cocone). Let F : J ⇝ C be a diagram. A cocone from F to X is
an object X ∈ C0 along with a family of morphisms {ψY : F(Y)→ X} indexed by
objects of Y ∈ J0 such that for any morphism a : Y → Z in J, ψZ ◦ F(a) = ψY, i.e.
(59) commutes.

F(Y) F(Z)

X
ψY

F(a)

ψZ

(59)

Often, the terminology cocone under F is used.

Definition 254 (Morphism of cocones). Let F : J ⇝ C be a diagram and {ψY :
F(Y)→ A}Y∈J0 and {ϕY : F(Y)→ B}Y∈J0 be two cocones. A morphism of cocones

https://en.wikipedia.org/wiki/Completion_of_a_ring

my first category theory textbook 71

from A to B is a morphism g : A → B in C such that for any Y ∈ J0, g ◦ ψY = ϕY,
i.e. (60) commutes.

F(Y)

A B

ψY ϕY

g

(60)

The category of cocones under F is denoted Cocone(F).

Definition 255 (Colimit). Let F : J ⇝ C be a diagram, the colimit of F denoted
colimF, if it exists, is the initial object of Cocone(F).

Examples 256. We dualize two examples from the previous section.

1. Dually to Example 252.1, colim∅ is the is the initial object of C if it exists.251 251 Equivalently, the initial object is the coprod-
uct of an empty family.

2. Dually to Example 252.2, we claim that the colimit of the diagram corresponding
to a group action is the set of its orbits. Let F : BG ⇝ Set be a G–set with
F(∗) = S, a cocone from F is a set Q along with a function q : S → Q such that
for any g ∈ G, (61) commutes. One can also see the colimit of F as the (gen-

eralized) coequalizer of all the morphisms g · −
with g ∈ G.

S S

Q
q q

F(g)=g·−

(61)

We infer that if there exists g ∈ G such that g · s = s′, then q(s) = q(s′). Denoting
o(s) := {g · s | g ∈ G} to be the orbit of s ∈ S, the set of orbits of S

O := {o(s) | s ∈ S}

along with the map o : S → O forms a cocone from F since o(g · −) = o.252 This 252 Since the orbits are, by definition, stable un-
der the action of G.cocone is the colimit since for any q : S → Q as in (61), any ! : O → Q making

(62) commute is completely determined by !(o(s)) = q(s) (which is well-defined
since o(s) = o(s′) =⇒ ∃g ∈ G, g · s = g · s′ =⇒ q(s) = q(s′)).

S S

O

Q

q q

g·−

o o

!

(62)
3. Let X = {x, y}, and for each nonzero n ∈ N, let (X, dn) denote the metric space

where x and y have distance 1
n (all other distances must be 0). Since morphisms in

Met are nonexpansive functions, for any m ≤ n, the identity function (X, dm)→
(X, dn) is a morphism in Met.253 We assemble all this data in a diagram of shape 253 We have

dm(x, y) =
1
m
≥ 1

n
= dn(x, y).(N,≤) (the opposite of (58)) depicted in (63).

(X, d1) (X, d2) · · · (X, dn) · · · (63)

(X, dm) (X, dn)

(L, d)
ψm ψn

(64)

Recall the one point space ({∗}, d1) is the terminal object 1 in Met (Example 174).
The family {!n : (X, dn)→ 1} comprising the unique morphisms to 1 is a cocone
under (63), and we claim it is the colimit cocone.

72 ralph sarkis

Suppose ψn : (X, dn) → (L, d) is a cocone under (63). Instantiating (59), we
find that (64) commutes, hence ψm(x) = ψn(x) and ψm(y) = ψn(y) for every
m, n ∈ N. We can give one name ψ to the function X → L that underlies all
ψn. For any n ∈ N, the distance between ψ(x) and ψ(y) is bounded above by
1
n , otherwise ψn : (X, dn) → (L, d) would not be nonexpansive. Therefore, the
distance can only be 0, and we conclude ψ(x) = ψ(y).

A morphism of cocones f from {!n} to {ψn} must satisfy f (!n(x)) = ψn(x) =

ψn(y), so the only possible choice is the function sending ∗ to ψ(x) = ψ(y).

SOL Exercise 257 (Trivial (co)limits). Show the following (co)limits always exist and find
what they are.

1. The limit of a diagram with only one morphism.

2. The colimit of a diagram with only one morphism.

3. The limit of a span.

4. The colimit of a cospan.

Instantiating our examples (co)limits in posets was rather simple because they
are thin categories, and every diagram in a thin category is commutative. This
generalizes to all (co)limits.

SOL Exercise 258. Let C be a posetal category. Show that the limit (resp. colimit) of any
diagram F : J⇝ C is the infimum (resp. supremum) of all points in the image of F.

Results

Proposition 259 (Uniqueness). Let F : J ⇝ C be a diagram, the limit (resp. colimit) of
F, if it exists, is unique up to unique isomorphism.

Proof. This follows from the uniqueness of terminal (resp. initial) objects.254 254 Corollary 171 (resp. Proposition 170).

Remark 260. The isomorphism between two limits (also colimits) is unique when
viewed as a morphism of cone. There might exists an isomorphism between the
tips that is not a morphism of cone. For instance, let A, B and C be finite sets. One
can check that both A× (B× C) and (A× B)× C are products of {A, B, C} (with
the usual projection maps). Thus, there is an isomorphism between them. One can
check that, for it to be a morphism of cones, it must send (a, (b, c)) to ((a, b), c), but
any other bijection between them is an isomorphism in Set.

For this reason, the limit really consists of the whole cone, and not just of the
object at the tip. Unfortunately, this subtlety is not well cared for in the literature
and it can and has led to errors.

Recall the definition of preserve and reflect we gave in Definition 184. With the
framework of (co)limits, we can give more formal related definitions.

my first category theory textbook 73

SOL Exercise 261 (NOW!). Let F : C ⇝ C′ be a functor and D : J ⇝ C be a diagram.
The composition F ◦ D is a diagram of shape J in C′. Show that sending a cone
{ψX : A→ DX}X∈J0 over F to {FψX : FA→ FDX}X∈J0 is a functor FD : Cone(D)⇝
Cone(F ◦ D). Dually, construct the functor FD : Cocone(D)⇝ Cocone(F ◦ D).

In words, F ◦ D is the diagram D where we applied F to all objects and mor-
phisms. Then, FD takes a cone over D and applies F to every object and morphism
in it to obtain a cone over F ◦ D.255 This allows us to define preservation and 255 Similarly for FD .

reflection of (co)limits, as well as creation.

Definition 262. Let F : C⇝ C′ be a functor and J be a category.

- We say that F preserves limits of shape J if for any diagram D : J ⇝ C, if
{ψX}X∈J0 is the limit cone over D, then {FψX}X∈J0 is the limit cone over F ◦ D.
In other words, for any D, FD preserves (in the sense of Definition 184) terminal
objects.256 256 We will often be less rigorous and write

something like lim(F ◦ D) = F(limJD). For in-
stance, we will say that F preserves binary prod-
ucts if FX × FY = F(X × Y) or FX × FY ∼=
F(X×Y).

- We say that F reflects limits of shape J if for any diagram D : J⇝ C, if {ψX}X∈J0

is a cone over D and {FψX}X∈J0 is the limit cone over F ◦ D, then {ψX}X∈J0 is
also the limit cone over D. In other words, for any D, FD reflects (in the sense of
Definition 184) terminal objects.

- We say that F creates limits of shape J if for any diagram D : J⇝ C, if {ϕX}X∈J0

is a limit cone over F ◦ D, then there exists a unique cone over D {ψX}X∈J0 such
that FψX = ϕX and {ψX}X∈J0 is a limit cone.

We leave to you the dualization of this definition.257 257 Replace cone by cocone and limit by colimit.

These are more technical and rigorous than our previous notions of preservation
and reflection of properties, but the intuition should stay the same. In practice,
preservation is used way more often,258 so let us practice a bit. 258 In this book, we will not use the other two.

Example 263. Recall from Exercise 131 that we have two functors (−)0 and (−)1

from Cat to Set. It follows from the definition of product categories that both
preserve products. Indeed the objects of C×D are pairs of objects in C0 ×D0, and
morphisms of C×D are pairs of morphisms in C1 ×D1, so

(C×D)0 = C0 ×D0 and (C×D)1 = C1 ×D1.

SOL Exercise 264. Show that if F preserves pullbacks (i.e.: F preserves limits of cospans),
then F preserves monomorphisms. State and prove the dual statement.

SOL Exercise 265. Show that if F : C ⇝ D is an isomoprhism, then F preserves and
reflects (co)limits of all shape.

As we already hinted at, oftentimes, forgetful functors preserve limits,259 we let 259 Due to results in Chapter 7.

you prove a very specific instance of this.

SOL Exercise 266. Let U : Set∗ ⇝ Set be the forgetful functor from pointed sets to sets.
Show that U preserves products, equalizers and pullbacks.

74 ralph sarkis

SOL Exercise 267. Fix A ∈ C0, show that the functor HomC(A,−) preserves binary
products. Namely, if X, Y ∈ C0 and X×Y exists, then

HomC(A, X×Y) ∼= HomC(A, X)×HomC(A, Y).

Corollary 268 (Dual). Fix A ∈ C0, show the functor HomC(−, A) preserves binary
coproducts when viewed as a functor C⇝ Setop, i.e.:

HomC(X + Y, A) ∼= HomC(X, A)×HomC(Y, A).

These last two results are strenghtened in Theorem 282 and Corollary 283. We
are not done proving things about (co)limits, but we move on to the next section
where we will do these proofs using diagram chasing.

3.3 Diagram Chasing

We show four results in increasing order of complexity to demonstrate diagram
chasing through examples.

Proposition 269. Let { fi, gi : Xi → Yi}i∈I be a familiy of parallel morphisms in C such
that for any i ∈ I, (65) is an equalizer, then (66) is an equalizer. Ei Xi Yi

ei

gi

fi
(65)

∏i∈I Ei ∏i∈I Xi ∏i∈I Yi
∏i∈I ei

∏i∈I gi

∏i∈I fi
(66)

Proof. Suppose o : O→ ∏i∈I Xi also equalizes ∏ fi and ∏ gi. We have the following
implications.260 260 The second implication uses (36).

o ◦∏ fi = o ◦∏ gi =⇒ πi ◦∏ fi ◦ o = πi ◦∏ gi ◦ o

=⇒ fi ◦ πi ◦ o = gi ◦ πi ◦ o

O

Ei Xi Yiei gi

fi

πi◦o!i (67)
Consequently, for each i ∈ I, πi ◦ o equalizes fi and gi, so it factors uniquely

through ei: πi ◦ o = ei ◦ !i as depicted in (??). The universal property of the product
allows us to form the pairing ⟨!i⟩i∈I : O → ∏i∈I Ei, and we have the following
derivation.

πi ◦∏ ei ◦ ⟨!i⟩ = ei ◦ πi ◦ ⟨!i⟩
= ei ◦ !i
= πi ◦ o

We conclude from the universal property of ∏ Xi that o = ∏ ei ◦ ⟨!i⟩ as depicted in
(68). It remains to show ⟨!i⟩ is unique with this property.

O

∏i∈I Ei ∏i∈I Xi ∏i∈I Yi∏i∈I ei ∏i∈I gi

∏i∈I fi

o
⟨!i⟩ (68)

If m : O→ ∏ Ei satisfies ∏ ei ◦ f = o, then

ei ◦ πi ◦ f = πi ◦∏ ei ◦ f = πi ◦ o,

but uniqueness of !i ensures πi ◦ f = !i (they both make (67) commute). This also
means f = ⟨!i⟩i∈I , so we are done.

my first category theory textbook 75

Corollary 270 (Dual). Let { fi, gi : Xi → Yi}i∈I be a familiy of parallel morphisms in
C such that for any i ∈ I, di : Yi → Di is the coequalizer of fi and gi, then ⨿ di is the
coequalizer of ⨿ fi and ⨿ gi.

One might summarize these results by saying that the product of equalizers is the
equalizer of products,261 and this is telling of a general fact about limits interacting 261 Dually, the coproduct of coequalizers is the

coequalizer of the coproducts.with limits (dually colimits interacting with colimits), see Theorem ?? (Corollary
??).

Theorem 271. Consider the pullback square in (69).

A×C B B

A C
f

gpA

pB

⌟ (69)

If g is monic, then pA also is. Symmetrically, if f is monic, then pB also is.262 262 This is commonly stated simply as: “The
pullback of a monomorphism is a monomor-
phism.”Proof. Let h1, h2 : X → A×C B be such that pA ◦ h1 = pA ◦ h2, we need to show that

h1 = h2. First, observe that h1 and h2 yield two cones over the cospan A C B
f g

as depicted in (70).
The two cones are

X B

A

pA◦h1

pB◦h1

and
X B

A

pA◦h2

pB◦h2

They make the squares commute because the
original pullback square commutes.

X

A×C B B

A C
f

gpA

pB

pA◦h1=pA◦h2

pB◦h1

⌟

pB◦h2

h1

h2

(70)

Furthermore, h1 and h2 are cone morphisms between X and A×C B and since the
pullback is the terminal cone over this cospan, they are unique. Now, we already
have that the projections onto A is the same for both new cones, but we claim this
is also true for the projections onto B. Indeed, because g is monic and the square
commutes, we have the following implications.

pA ◦ h1 = pA ◦ h2 =⇒ f ◦ pA ◦ h1 = f ◦ pA ◦ h2

=⇒ g ◦ pB ◦ h1 = g ◦ pB ◦ h2

=⇒ pB ◦ h1 = pB ◦ h2

In other words, the two new cones are in fact the same cones, hence h1 and h2 are
the same morphisms by uniqueness, which concludes our proof.

Corollary 272 (Dual). The pushout of an epimorphism is an epimorphism.

76 ralph sarkis

Theorem 273 (Pasting Lemma). Consider (71), where the right square is a pullback.

A B C

A′ B′ C′

f

α

g

β
⌟

γ

f ′ g′

(71)

If (71) commutes, the left square is a pullback if and only if the rectangle is.263 263 This result is called the pasting lemma.

A C

A′ C′

g◦ f

α

g′◦ f ′

γ (72)
Proof. (⇒) Explicitly, we have to show that α : A′ ← A → C : g ◦ f is the pullback
of g′ ◦ f ′ : A′ → C′ ← C : γ, i.e., that (72) is a pullback square. The commutativity
g′ ◦ f ′ ◦ α = γ ◦ g ◦ f implies this is already a cone over the cospan we just described.
Now, suppose there is another cone over this cospan, namely, there exist morphisms
pA′ : X → A′ and pC : X → C satisfying g′ ◦ f ′ ◦ pA′ = γ ◦ pC as depicted in (73).

X

A B C

A′ B′ C′

pC

pA′

!B

!A f

α
⌟

g

β
⌟

γ

f ′ g′

(73)

Notice that composing pA′ with f ′, we obtain a cone over the cospan in the right
square and by universality of B, this yields a unique morphism !B : X → B satisfying
g ◦ !B = pC and β ◦ !B = f ′ ◦ pA′ . This second equality yields cone over the cospan in
the left square, thus we get a unique morphism !A : X → A satisfying α ◦ !A = pA′

and f ◦ !A = !B. Composing the last equality with g, we get

g ◦ f ◦ !A = g ◦ !B = pC,

showing that !A is a morphism of cones over the rectangular cospan.
What is more, any other morphism m : X → A of cones over this cospan must

satisfy
g ◦ f ◦m = pC and β ◦ f ◦m = f ′ ◦ α ◦m = f ′ ◦ pA′ ,

and thus, f ◦ m is a morphism of cones over the cospan in the right rectangle. By
uniqueness, f ◦m = !B, so m is also a morphism of cones over the cospan in the left
square, and by universality of A, m = !A.

(⇐) Explicitly, we have to show that α : A′ ← A → B : f is the pullback of
f ′ : A′ → B← B : β.

X

A B C

A′ B′ C′

pA′

!A

pB

f

α

g

β
⌟

γ

f ′ g′

(74)

my first category theory textbook 77

Let pA′ : A′ ← X → B : pB be a cone over the cospan of the left square (i.e. β ◦ pB =

f ′ ◦ pA′). The commutativity of (71) implies pA′ : A′ ← X → C : g ◦ pB is a cone
over the rectangle cospan, then by universality, there exists a unique !A : X → A
such that g ◦ f ◦ !A = g ◦ pB and α ◦ !A = pA. Moreover, with the commutativity
of the left square, we find that f ◦ !A is a morphism of cones over the right cospan
satisfying β ◦ f ◦ !A = f ′ ◦ α ◦ !A = f ′ ◦ pA′ = β ◦ pB and g ◦ f ◦ !A = g ◦ pB. But
since our hypothesis on pA′ and pB implies pB is a morphism of cones satisfying
the same equations, by universality of B, pB = f ◦ !A. Therefore, !A is a morphism
of cone over the left cospan.

Finally, if m : X → A also satisfies α ◦ m = pA′ and f ◦ m = pB. We find
in particular that m is a morphism of cones over the rectangle cospan, hence by
universality, m = !A.

Corollary 274 (Dual). If (75) commutes, the right square is a pushout if and only if the
rectangle is.

A B C

A′ B′ C′

α

f

β

g

γ

g′f ′

⌟

(75)

SOL Exercise 275. Show that (76) is a pullback square. Let i : A′ → A be an isomorphism,
show that (77) is a pullback square.264 264 We can summarize the first square by say-

ing that the pullback of any morphism along
the identity gives back the original morphism.
The second square is basically a converse to the
statement “pullbacks are unique up to isomor-
phism” in this very special case.

A A

B B

f

idA

f

idB

⌟ (76)
A′ A

B B

f ◦i

i

f

idB

⌟ (77)

Definition 276 ((Co)completeness). A category is said to be (co)complete (resp.
finitely (co)complete) if any small (resp. finite) diagram has a (co)limit.

Theorem 277. Suppose that a category C has all products and equalizers then C has all
limits, i.e. C is complete.

Proof. Let F : J⇝ C be a diagram, we will show that the limit of F is obtained from
the equalizer of two morphisms265 265 Recall that s and t denote the sources and tar-

gets of morphisms.

u1, u2 : ∏
X∈J0

F(X)→ ∏
a∈J1

F(t(a)),

which are defined below. The equalizer and the products it involves exist by hy-
pothesis.

First, let us try to explain the intuition behind this construction. The limit of F
is the terminal cone over F. In particular, it is a cone over F, namely, a family of
morphisms ψX : limF → FX indexed by X ∈ J0 such that for any a : X → Y ∈ J1,
Fa ◦ ψX = ψY. Since C has products, we can also specify the morphisms in the cone
by a single morphism ψ : limF → ∏X∈J0

FX.266 266 The family {ψX} gives rise to ψ by the uni-
versal property of the product and ψ gives rise
to the family by post-composing with the pro-
jections πX : ∏X∈J0

FX → FX.

ψX = πX ◦ ψ

78 ralph sarkis

The additional property of the cone is now ∀a : X → Y ∈ J1, Fa ◦πX ◦ψ = πY ◦ψ.
Replacing the objects X and Y with s(a) and t(a) respectively, we obtain two families
of morphisms

{Fa ◦ πs(a) : ∏
X∈J0

FX → Ft(a) | a ∈ J1} and {πt(a) : ∏
X∈J0

FX → Ft(a) | a ∈ J1}.

The universal property of products yields two parallel morphisms u1, u2 : ∏X∈J0
FX →

∏a∈J1
Ft(a) making (78) commute.

∏X∈J0
FX

∏a∈J1
Ft(a) Ft(a)

∏X∈J0
FX

u1

πa

Fa◦πs(a)

πt(a)

u2

(78)

We find that ψ equalizes u1 and u2.267 Since we did not use the fact that ψ is terminal 267 We check that u1 ◦ ψ = u2 ◦ ψ by post-
composing with πa for every a ∈ J1. Indeed,
we have

πa ◦ u1 ◦ ψ = Fa ◦ πs(a) ◦ ψ

= πt(a) ◦ ψ (def. of ψ)

= πa ◦ u2 ◦ ψ,

and the universal property of ∏a∈J1
Ft(a) im-

plies u1 ◦ ψ = u2 ◦ ψ.

yet, any cone over F yields a morphism from the tip to the product ∏X∈J0
FX that

equalizes u1 and u2. Moreover, this process can be reversed, hence any morphism
that equalizes u1 and u2 corresponds to a cone over F.

We are on a good track because we have shown that cones over F are in corre-
spondence with cones over the parallel morphisms u1 and u2. If we can show there
is also a correspondence between the morphisms of such cones, we will be able to
conclude that the terminal cone over u1 and u2 (i.e. their equalizer) is the terminal
cone over F (i.e. the limit of F).268 268 More abstractly, we show there is an iso-

morphism between the categories Cone(F) and
Cone(U), where U is the diagram with only two
parallel morphisms sent to u1 and u2. One can
check that isomorphisms of categories preserve
terminal objects (Exercise 265), so the equalizer
of u1 and u2 is the limit of F.

A

∏X∈J0
FX ∏a∈J1

Ft(a)

B

u1

u2

ϕ

ψ

g (79)

Let {ψX , ϕX : A → FX}X∈J0 be two cones over F, g : A → B be a morphism of
cones, and ψ and ϕ be the corresponding morphism that equalize u1 and u2. We
will show that (79) commutes. By definition of g, we have ϕX ◦ g = ψX for any
X ∈ J0, which we can rewrite as πX ◦ ϕ ◦ g = πX ◦ ψ. By the universal property of
the product ∏X∈J0

FX, we conclude that ϕ ◦ g = ψ.
Conversely, given g that makes (79) commute, g is a morphism of cones over F

because for any X ∈ J0, ϕX ◦ g = πX ◦ ϕ ◦ g = πX ◦ ψ = ψX .
In conclusion, let ψ : L → ∏X∈J0

be the equalizer of u1 and u2, the limit of F is
the cone {πX ◦ ψX}X∈J0 .

Remark 278. The same proof yields a more general statement: For any cardinal κ, if
a category C has all products of size less than κ and equalizers, then it has limits of
any diagram with less than κ objects and morphisms.

Corollary 279 (Dual). If a category C has all coproducts of size less than κ and coequaliz-
ers, then it has colimits of any diagram with less than κ objects and morphisms.

Definition 280. A functor C ⇝ D is said to be (finitely) (co)continuous if it pre-
serves all (finite) (co)limits.

my first category theory textbook 79

SOL Exercise 281. Show that a functor is continuous if and only if it preserves products
and equalizers. State and prove the dual statement.

Theorem 282. Fix A ∈ C0, the functor HomC(A,−) is continuous.

Proof. We could show that HomC(A,−) preserves equalizers and use Exercises 267

and 281, but the direct proof is not very long and it lets us get even more familiar
with cones.

Let D : J ⇝ C be a diagram and {ψX : limD → DX}X∈J0 be the limit cone, we
need to show that {ψX ◦− : HomC(A, limD)→ HomC(A, DX)}X∈J0 is a limit cone.

HomC(A, DX)

HomC(A, limD)

HomC(A, DY)

ψX◦−

Da◦−

ψY◦−

(80)

First, for any a : X → Y ∈ J1, we have Da ◦ ψX = ψY, which implies (80)
commutes. Hence, {ψX ◦ −}X∈J0 is a cone over HomC(A, D−).

Next, if {ϕX : T → HomC(A, DX)}X∈J0 is another cone over HomC(A, D−), then
observe that any t ∈ T gives rise to a cone over D {ϕX(t) : A → DX}X∈J0 . Indeed,
we have

D f ◦ ϕX(t) = ((D f ◦ −) ◦ ϕX)(t) = ϕY(t).

We obtain a unique morphism of cones g(t) : A → limD making (81) commute for
all X ∈ J0. This yields a function g : T → HomC(A, limD) that is a morphism of
cones because combining (81) for every t ∈ T yields (ψX ◦ −) ◦ g = ϕX .

A

DX

limD

g(t)

ψX

ϕX (t)

(81)

If g′ : T → HomC(A, limD) is another morphism of cones, then we must have
that g′(t) also makes (81) for all X ∈ J0.269 Therefore, g′(t) : A → limD is a

269 We have

ψX ◦ g′(t) = ((ψ ◦ −) ◦ g′)(t) = ϕX(t).
morphism of cones and since limD is terminal, we conclude g′(t) = g(t) and g′ =
g.

Corollary 283 (Dual). Fix A ∈ C0, the functor HomC(−, A) is continuous.270 270 More concisely, the Hom bifunctor is contin-
uous in each argument.

SOL Exercise 284. Show that a category with all pullbacks and a terminal object is finitely
complete.

Corollary 285 (Dual). A category with all pushouts and an initial object is finitely cocom-
plete.

Remark 286. We can conclude271 that a functor is finitely continuous if and only if 271 Similarly to Exercise 281.

it preserves pullbacks and the terminal object and it is finitely coconituous if and
only if it preserves pushouts and the initial object.

4 Universal Properties
4.1 Examples 81

4.2 Generalization 93

4.3 Comma Categories 94

We continue our exploration of universal constructions. This chapter is arranged
like the previous one, we give lots of examples before abstracting away to define
universal properties.272 This abstracting step involves a new concept: comma cate- 272 I estimate we have done enough diagram

chasing, so we will not prove as much results
as we did in Chapter 3.

gories, which are interesting in their own right.

4.1 Examples

Free Monoid

The construction of a free object is common to different fields of mathematics. In-
formally, when C is a category whose objects are objects of another category D
equipped with extra structure (e.g. C is a concrete category and D = Set), the
free C–object over a D–object X carries the least amount of structure possible to be
considered a part of C while containing X.

The example we will carry out in Mon can be carried out in many other cate-
gories like Grp, Ab, Ring, etc. We choose Mon because the concrete characteriza-
tion of a free monoid is simple.

Definition 287 (Classical). The free monoid on a set A, denoted by A∗, is the set
of finite words with symbols in A with the multiplication being concatenation of
words and identity being the empty word ε.273

273 Examples of finite words in {a, b, c}∗ are a,
ab, abc, accabac, etc. The concatenation of abc
and aacb is abcaacb.An intuitive way to see A∗ is that it is the smallest monoid that contains A. We

start from single-letter words which are just elements of A, and then generate the
rest by concatenating bigger and bigger words together (before finally adding ε).

In order to give a categorical characterization, we need to look at homomor-
phisms from or into the free monoid. Notice that any homomorphism h∗ : A∗ → M
is completely determined by where h∗ sends single-letter words, i.e., elements of
A. Indeed, in order to satisfy the homomorphism property, we must have for any
a, b ∈ A,

h∗(ab) = h∗(a) · h∗(b) and h∗(ε) = 1M.

In general, the unique homomorphism sending a ∈ A to h(a) can be defined recur-
sively:

h∗(w) =

h(a) · h∗(w′) a ∈ A, w ∈ A∗, w = aw′

1M w = ε
.

82 ralph sarkis

Concisely, for any function h : A → M, there is a unique homomoprhisms h∗ :
A∗ → M that sends a to h(a). We call this fact the universal property of the free
monoid.

We repeated several times that universal properties should determine an object
up to isomorphism, let us check this. Suppose that a monoid N contains A and
satisfies the same property, that is for any (set-theoretic) function h : A → M, there
is a unique homomorphism h∗N : N → M with h∗N(a) = h(a). We claim that N and
A∗ are isomorphic.

If we take M = A∗, and h : A → A∗ = a 7→ a, then we get a homomorphism
h∗N : N → A∗ using the property for N. If we take M = N and the inclusion i : A ↪→
N, then the property of A∗ yields a homomorphism i∗ : A∗ → N. By construction,
h∗N ◦ i∗ : A∗ → A∗ and i∗ ◦ h∗N : N → N are both homomorphisms that send a to
a.274 Note that idA∗ : A∗ → A∗ and idN : N → N are also homomorphisms sending 274 Recall that both A∗ and N contains all ele-

ments in A.a to a. By the uniqueness in the universal property, we conclude

h∗N ◦ i∗ = idA∗ and i∗ ◦ h∗N = idN ,

that is, A∗ and N are isomorphic.
The universal property we gave above determined the free monoid up to iso-

morphism, so we are happy to make this into a definition. However, this definition
cannot take place entirely in the category Mon. We had to implicitly rely on the fact
that a monoid has an underlying set and homomorphisms are just functions satis-
fying additional properties. Our categorical definition thus relies on the forgetful
functor U : Mon⇝ Set.

Definition 288 (Categorical). The free monoid of a set A is an object A∗ in Mon
along with a canonical inclusion i : A → U(A∗) that satisfies the following universal
property: for any monoid M and function h : A → U(M), there exists a unique
homomorphism h∗ : A∗ → M such that U(h∗) ◦ i = h, namely, h∗(i(a)) = h(a). This
is summarized in (82).275 275 We omit occurences of U as the underlying

set (resp. function) of a monoid (resp. homo-
morphism) is often denoted with the same sym-
bol as the monoid (resp. homomorphism).A A∗ A∗

M M

i

h∗
h

h∗

in Set in Mon

forgetful (82)

We will see in Chapter 7 that the assignment A 7→ A∗ can be assembled into a
functor −∗ : Set ⇝ Mon. It goes in the opposite direction to the forgetful functor,
and in fact can be seen as a weak notion of inverse to U.

Abelianization

Our next example is very similar to the previous one. We add the least amount of
structure to a group G to obtain an abelian group Gab.276 276 This assignment assembles into a weak in-

verse to the intermediate forgetful functor
Ab⇝ Grp.Definition 289 (Classical). Let G be a group, the abelianization of G, denoted by

Gab, is the quotient of G by the commutator subgroup G′ := {xyx−1y−1 | x, y ∈
G} ⊆ G, that is Gab := G/G′.

my first category theory textbook 83

Let us get more insight into this definition. The abelianization is supposed to be
the biggest abelian quotient of G. To see why, note that if A is an abelian group,
any homomorphism h : G → A must satisfy h(xyx−1y−1) = 1A for any x, y ∈
G.277 Hence, G′ is contained in the kernel of h. By the fundamental theorem of 277 The homomorphism property implies

h(xyx−1y−1) = h(x)h(y)h(x)−1h(y)−1

= h(x)h(x)−1h(y)h(y)−1

= 1A.

homomorphism (ref), there is a unique factorization h = G π→ G/G′ h′→ A, where π

is the canonical quotient map. We summarize this universal property as follows.

Definition 290 (Categorical). Let G be a group, the abelianization of G is an abelian
group Gab with a map π : G → Gab satisfying the following universal property: for
any homomorphism h : G → A where A is abelian, there is a unique homomor-
phism h∗ : Gab → A such that h∗ ◦ π = h. This is summarized in (83).

G Gab Gab

A A

π

h∗
h

h∗

in Grp in Ab

forgetful (83)

We can verify that this characterizes the abelianization of G up to isomorphism.278 278 Compare with what we proved for free
monoids.

SOL Exercise 291. Let p : G → H satisfy the universal property of π : G → Gab. Show
that Gab ∼= H.

Vector Space Basis

This is the third and last example of the same flavor.279 279 We now work with the forgetful functor
Vectk ⇝ Set.

Definition 292 (Classical). Let V be a vector space over a field k, a basis for V is
a subset S ⊆ V that is linearly independent and generates V, namely, any v ∈ V
can be expressed as a linear combination of elements in S and any s ∈ S cannot be
expressed as a linear combination of elements in S \ {s}.

Once again, we would like to get rid of the content of this definition talking
about elements, so we focus on what this means for linear maps coming out of V.
Let S be a basis of V, W be another vector space over k and T : V → W be a linear
map. By linearity, T is completely determined by where it sends the elements of
S. Indeed, for any v ∈ V, write v as a linear combination ∑s∈S λss with λs ∈ k
(only finitely many of the coefficients are non-zero), then T(v) = ∑s∈S λsT(s). We
conclude that any (set-theoretic) function t : S→W extends to a unique linear map
T : V →W.280 280 This is completely analogous to how any ho-

momorphism from the free monoid A∗ is de-
termined by where it sends the generators (ele-
ments of A).

We claim that this property completely characterizes bases of V. Indeed, let
S ⊆ V be such that for any t : S → W, there is a unique linear map T : V → W
extending t. We will show that S is generating and linearly independent.

1. Let U be the subspace generated by S.281 We claim that the quotient space V/U 281 It contains all linear combinations of elements
in S.is {0} implying U = V, i.e., S is generating. Let t : S → V/U be the function

sending everything to 0, both the quotient map π : V → V/U and the 0 map
0 : V → V/U extend t linearly.282 By the uniqueness in the universal property, 282 The former extends t because every linear

combination of elements in S is in U which π
sends to 0.

π and 0 must coincide, hence V/U must be trivial.

84 ralph sarkis

2. Fix v ∈ S, we will show that v is not a linear combination of elements in S \ {v}.
First, we claim that v is not zero. If it were, then any function t : S → k sending
v to a non-zero element could not be extended. Next, consider the function283 283 Recall that the coproduct of vector spaces is

their direct sum, i.e. V + V = {(u, w) | u, w ∈
V} and operations are done coordinate-wise.

t : S→ V + V =

(s, 0) s ̸= v

(0, v) s = v
.

By the universal property, there exists a linear map T : V → V + V extending t.
Notice that applying T to a linear combination of elements in S, we must obtain
a vector of V + V whose second coordinate is 0. However, the second coordinate
of T(v) is v, not 0. Hence, v is not a linear combination of elements in S. Our
choice of v was arbitrary, so we can conclude that S is linearly independent.

We have the following alternative definition of a vector space basis.284 284 We are assuming a different point of view
than we did for free monoids, but we are do-
ing the same thing. One could start from a set S
and say that V is the free vector space over S if
there is the inclusion i : S→ V satisfying (84).

This opposite point of view can be mislead-
ing. If we try to prove that this characterizes
the basis up to isomorphism (i.e. if S and S′ are
bases of V, then S ∼= S′), we will have a harder
time than before. Comparing with the proofs
for free monoids and abelianizations, we find
we can easily prove that if V and W have S as a
basis, then V ∼= W.

Definition 293 (Categorical). Let V be a vector space, a basis of V is a set S along
with an inclusion i : S → V satisfying the following universal property: for any
function t : S→W where W is a vector space, there is a unique linear map T : V →
W such that T ◦ i = t. This is summarized in (84).

S V V

W W

i

T
t

T

in Set in Vectk

forgetful (84)

The previous three examples of universal properties are all categorifications of a
free construction. Here are two others we leave you to work out on your own.

SOL Exercise 294. What is the free partial order over a set S?

Recall that we can see a category as a directed graph with extra structure using
the forgetful functor U : Cat ⇝ DGph that forgets about composition and iden-
tities. From any directed graph G, we can construct a category of paths of G, de-
noted by PG. The objects of PG are those of G, and the morphisms in HomPG(A, B)

are paths from A to B in G. The composition of two paths A
f1−→ · · · fn−→ B and

B
g1−→ · · · gm−→ C is the concatenated path A

f1−→ · · · fn−→ B
g1−→ · · · gm−→ C, and the

identity on A is the empty path going from A to A.285 285 Of course, concatenating a path with the
empty path does nothing.

SOL Exercise 295. Show that PG is the free category over the directed graph G. More-
over, show that when G has a single object, PG is the delooping of the free monoid
G1
∗.

Exponential Objects

This section and the following two are motivated by important constructions in Set
that we want to define categorically. Going further in this direction amounts to
doing topos theory, namely, studying categories which look a lot like Set.

https://ncatlab.org/nlab/show/topos

my first category theory textbook 85

Remark 296. Let me repeat that there is a choice to make when doing such categori-
fications. Given a classical construction, we need to decide what is the core idea
that we want to keep when we abstract away from concrete details. If this core idea
allows you to recover the original construction when instantiating back in Set, then
your abstraction is appropriate, but it might not be the only one.

SOL Exercise 297. Let C be a category and X ∈ C0 be such that for any Y ∈ C0, Y × X
exists. Show that −× X is a functor C⇝ C.

Let A and X be sets, AX commonly denotes the set of functions X → A. In
particular, Set is locally small and HomSet(A, B) is a set, i.e., an object of Set. This
is a somewhat exceptional situation, but there are other categories where hom-sets
can actually be viewed as objects of the category.286 286 For instance, the set of linear maps V →W is

a vector space where addition and scalar multi-
plication is done pointwise.

In hope to generalize this construction to other categories, let us study mor-
phisms into AX .287 Given a set B and a morphism f : B → AX , there is a natural

287 A priori, there is no reason to prefer mor-
phisms into AX over morphisms out of AX , but
the intuition is cleaner with the former.

operation called uncurrying that takes f to λ−1 f : B × X → A which basically
evaluates both f and its output at the same time. Namely, λ−1 f (b, x) = f (b)(x).

As a particular case, we consider the identity function AX → AX . Uncurrying
yields the evaluation function ev : AX × X → A that evaluates the function in the
first coordinate at the second coordinate: ev(f , x) = f (x).

Now, as the name suggests, uncurrying has an inverse operation called curry-
ing288 which takes g : B× X → A to λg : B→ AX defined by λg(b) = x 7→ g(b, x). 288 Named in honor of Haskell Curry.

Morally, λg delays the evaluation of g on the second input to later.289 Moreover, 289 For computer scientists, this is also related to
the concept of continuations.notice that the currying of g satisfies ev(λg(b), x) = g(b, x) ∈ A for any b ∈ B

and x ∈ X. Intuitively, λg(b) reads the first argument b and waits for the second
argument, then ev(λg(b), x) inputs x, so it is the same thing as doing g(b, x). This
along with the fact that currying and uncurrying are bijective operations290 leads 290 Check that λλ−1g = g and λ−1λg = g.

to a universal property that ev satisfies. It is summarized in (85).

A AX × X AX

B× X B

ev

λg×idXg λg

in Set in Set

−×X (85)

This is entirely categorical, so we can define exponential objects as follows.

Definition 298 (Exponential). Let C be a category and X ∈ C0 be such that −× X
is a functor.291 For A ∈ C0, the exponential AX (if it exists) is an object AX along 291 i.e.: all binary products with X ∈ C0 exist.

with a morphism ev : AX × X → A such that for all g : B × X → A, there is a
unique λg : B→ AX making (85) commute.

Informally, one can think of AX as an object which behaves like HomC(A, X).
The terminology internal hom is often used (sometimes in more general contexts).

SOL Exercise 299. Let k be a field, and V and W be vector spaces over k. Show that the
vector space HomVectk (V, W) equipped with pointwise addition and scalar multi-
plication of linear maps is the exponential WV .

https://en.wikipedia.org/wiki/Haskell_Curry

86 ralph sarkis

SOL Exercise 300. Show that if e : Y × X → A satisfies the same universal property as
ev, then Y ∼= AX .292 292 We will stop proving that universal proper-

ties determine objects up to isomorphisms, the
abstract result (stating that works for all univer-
sal properties) is Corollary ??.

Definition 301 (Cartesian closed). When a category C has a terminal object and all
exponentials AX for all A, X ∈ C0 (in particular, it has all binary products293), we

293 It also follows that C has all finite products.
say it is cartesian closed.

The category of sets is cartesian closed. Here is an exercise calling back to when
we showed many familiar properties of Cartesian products generalized to binary
products.

SOL Exercise 302. Let C be a category with a terminal object 1, and let X ∈ C0. Show
that X is the exponential X1 and 1 is the exponential 1X ,294 i.e. find the evaluation 294 Other properties about exponentials in Set

can be generalized (e.g. (XY)Z ∼= XY×Z), but
we will wait until we see the Yoneda lemma to
give more elegant proofs.

morphisms and prove they satisfy the right universal property.

Subobject Classifier

SOL Exercise 303. Let C be a well-powered category with all pullbacks. We define
SubC on morphisms: it sends f : X → Y to f ∗(−) : SubC(Y) → SubC(X) sending
m : I ↣ Y to f ∗(m), the pullback of m along f as depicted in (86). Show that this is
well-defined (recall that a subobject of Y is an equivalence class of monomorphisms)
and makes SubC into a functor Cop ⇝ Set.

J I

X Y

f ∗(m)

f

m
⌟ (86)

In Set, recall that subobjects are subsets. Hence, letting Ω = {⊥,⊤} there is
a correspondence between SubSet(X) and HomSet(X, Ω), it sends I ⊆ X to the
characteristic function χI : X → Ω,295 and in the other direction f : X → Ω is 295 The characteristic function χI is defined by

χI(x) =

{
⊤ x ∈ I
⊥ x /∈ I

.
sent to f−1(⊤) ⊆ X. In particular, we have that χ−1

I (⊤) = I, which we can write
categorically as the following pullback.296

296 Recall our discussion on preimages in Exam-
ple 239.

I 1

X ΩχI

⊤
⌟ (87)

Crucially, this pullback uniquely determines χI .297 The role played by the two 297 If f : X → Ω also makes (87) a pullback
square, then f−1(⊤) = I, so f and χI must co-
incide. The preimage of f on ⊤ determines all
of f because there is only one other value in the
codomain of f .

element set {⊥,⊤} can now be generalized to other categories.

Definition 304 (Subobject classifier). Let C be a category with a terminal object 1.
The subobject classifier (if it exists) is a morphism ⊤ : 1 → Ω ∈ C1 such that for
any monomorphism I ↣ X there is a unique morphism χm : X → Ω such that (87)
is a pullback square. We call χI the classifying morphism of I ↣ X.

Example 305 (Set∗). We find the subobject classifier in Set∗.
Let (X, x) be a pointed set, we first show that a subobject of (X, x) is a subset of

X that contains x. An argument like the one in Example 155 shows that monomor-
phisms in Set∗ are precisely the injective functions that preserve the point.298 Hence, 298 We can also give a more abstract proof. The

forgetful functor Set∗ ⇝ Set is faithful so it re-
flects monomorphisms by Exercise 188. Also,
we saw in Exercise 266 that it preserves pull-
backs, hence it preserves monomorphisms by
Exercise 264.

for a subset I ⊆ X with x ∈ I, the inclusion i : (I, x) ↪→ (X, x) is a monomor-
phism. Moreover, we can show (as we did in Example 191) that two monomor-
phisms (I, i) ↣ (X, x) and (J, j) ↣ (X, x) are in the same equivalence class of

my first category theory textbook 87

SubSet∗(X, x) if and only if their images coincide (and their image must contain x).
We conclude that SubSet∗(X, x) is in correspondence with {S ⊆ X | x ∈ S}.

The terminal object 1 in Set∗ is the singleton {∗} with distinguished point ∗.
Keeping the same notation Ω = {⊥,⊤}, we claim the subobject classifier is the
unique morphism ⊤ : 1 → (Ω,⊤),299 it sends ∗ to ⊤. For any subset I ⊆ X that 299 The terminal object 1 is also initial in Set∗,

see Exercise 175.contains x ∈ X, we define the classifying morphism χI : (X, x) → (Ω,⊤) as before
(see Footnote 295), noting that it is a morphism in Set∗ because x belongs to I so is
mapped to ⊤. It clearly makes the square in (88) commute.300 300 Both paths send everything in I to ⊤.

(A, a)

(I, x) ({∗}, ∗)

(X, x) (Ω,⊤)

⊤

χI

f

f

(88)

Now, for any morphism f : (A, a) → (X, x) making (88) commute, we find the
image of f must be contained in I.301 Therefore, we can factor f through the 301 Otherwise some a ∈ A is mapped to ⊥ in the

bottom path but not the top path.inclusion of I in X (necessarily uniquely). We conclude that the square in (88) is a
pullback.

It remains to show χI is the only possible morphism making that possible. If an-
other morphism χ′ does, we apply the forgetful functor which preserves pullbacks
(Exercise 266) to get a pullback in Set. Because ⊤ : 1→ Ω is the subobject classifier
in Set, χ′ must be the classifying morphism which is the characteristic map χI .

I′ I 1

X X ΩχI

⊤
⌟

idX

∼

χI′

⌟ (89)Before we can draw a diagram (akin to (82), (83), etc.) summarizing the univer-
sal property of the subobject classifier, we need to make sure that the classifying
morphisms of two monomorphisms in the same equivalence class in SubC(X) are
equal. Let I′ ↣ X and I ↣ X represent the same subobject, namely, there is an
isomorphism I′ ∼= I making the left square in (89) commute. The right square is a
pullback by hypothesis and the left square is a pullback by Exercise 275. Therefore,
the rectangle is a pullback by the pasting lemma, and we see that χI′ = χI ◦ idX by
uniqueness of the classifying morphism.

Now, in a well-powered category C that has a terminal object and all pull-
backs,302 the subobject classifier ⊤ : 1 → Ω is such that for any subobject m of 302 The definition of subobject classifier does not

need the well-poweredness and the existence of
all pullbacks, but they are necessary to have a
universal property because it uses the functor
SubC. In any case, subobject classifiers are usu-
ally used when these conditions are satisfied.

X, there is a unique morphism χm : X → Ω satisfying χm
∗(⊤) = m. This is sum-

marized in (90) where we identify ⊤ with the function 1 → SubC(Ω) picking out
this equivalence class of ⊤ : 1→ Ω in SubC(Ω) (recall that any morphism out of 1,
in particular ⊤ : 1↣ Ω, is monic by Exercise 179), and similarly for m.

Notice that the dashed arrow gets reversed be-
cause SubC is contravariant. We could also write
“in Cop” and not reverse the arrow.

1 SubC(Ω) Ω

SubC(X) X

⊤

m χm

in Cin Set

χm
∗(−)

SubC (90)

88 ralph sarkis

Power Objects

This is the third and last example that can motivate the study of topos theory.
Let X be a set, PX commonly denotes the set of all subsets of X. In particular,

Set is well-powered and SubSet(X) is a set, i.e., an object of Set. Again, this is an
exceptional situation303 that we would like to make abstract. 303 This is even more exceptional than being

cartesian closed. I do not have any simple ex-
amples, but we will see a couple of harder ex-
amples.

Let us study morphisms into PX. A function f : Y → PX assigns to each y ∈ Y
a (possibly empty) set f (y) of values in X. We can also present the data of f as
a subset Γ f of X × Y containing the pair (x, y) whenever x ∈ f (y). This yields a
bijection between functions f : Y → PX and subsets Γ f ⊆ X× Y304: given a subset 304 This generalizes the correspondence between

elements of PX and SubSet(X) because

PX ∼= Hom(1,PX) ∼= SubSet(X× 1) ∼= SubSet(X).
Γ ⊆ X × Y, we define fΓ : Y → PX by f (y) = {x ∈ X | (x, y) ∈ Γ}. The trick
to rephrase this categorically is to note that Γ f is the preimage of the “element of”
subset ∈X ⊆ X×PX under the function idX × f : X×Y → X×PX.305 Therefore, 305 We have that (idX × f)(x, y) = (x, f (y)) is in

∈X if and only if x ∈ f (y) if and only if (x, y) ∈
Γ f . Thus, Γ f = (idX × f)−1(∈X).

we have the following pullback (again, see Example 239).

Γ f ∈X

X×Y X×PX
idX× f

⌟
(91)

We are ready to give the abstract definition.

Γ ∈X

X×Y X×PX

γ

idX× fγ

⌟
(92)

Definition 306 (Power object). Let C be a category and X ∈ C0 be such that X ×−
is a functor. The power object of X (if it exists) is an object PX ∈ C0 along with a
monomorphism ∈X ↣ X ×PX such that for any monomorphism γ : Γ ↣ X × Y,
there is a unique morphism fγ : Y → PX making (92) a pullback square.

Note that we obtain fγ from γ instead of Γ f from f (like we did in Set). In the
end, it does not matter because the key property is that there is a correspondence
between them. However, in the definition above, the fact that pullbacks are unique
up to isomorphisms implies γ is uniquely determined by fγ up to isomorphism,306 306 More precisely, the subobject represented by

γ is uniquely determined by γ.hence we only need to require fγ is uniquely determined by γ.

Example 307 (Set∗). Recall that a subobject of (X, x) in Set∗ is a subset of X that
contains x. This suggests the power object of X may be the set of subsets of X
containing x. However we still need to figure out what would be the distinguished
point in that set. It turns out there is no point that works out. In fact, we can show
that, in general, (X, x) does not have a power object.

We saw above that the power object P(X, x) must satisfy

Hom(1,P(X, x)) ∼= SubSet∗((X, x)× 1).

Since 1 is initial in Set∗, the L.H.S. is a singleton set. We recall that taking a product
with the terminal object does nothing (Exercise 211), so the R.H.S. is the set of all
subsets of X containing x. Hence, this isomorphism cannot be unless (X, x) = 1.307 307 In that case, you can check 1 has a (uninter-

esting) power object.
Again, we want to draw a diagram that summarizes this universal property. Just

like for subobject classifiers, we have to check fγ is the same as fγ′ when γ and γ′

are representatives for the same subobject.

my first category theory textbook 89

SOL Exercise 308. Let ∈X ↣ X×PX be the power object of X ∈ C0. Show that if γ and
γ′ are two monomorphisms equal in SubC(X×Y), then fγ = fγ′ .

We can conclude that if C is well-powered and has a terminal object, the power
object of X ∈ C0 is a monomorphism ∈X ↣ X ×PX such that for any subobject γ

of X×Y, there is a unique morphism fγ : Y → PX satisfying (idX × fγ)
∗(∈X) = γ.

This is summarized in (93).

1 SubC(X×PX) PX

SubC(X×Y) Y

∈X

ι fγ

in Cin Set

fγ
∗(idX×−)

SubC(X×−) (93)

In the category DGph, any graph has power object.308 Before proving this, we 308 Recall that DGph contains only small di-
rected graphs, those with a set of objects and a
set of arrows. The morphisms in DGph are like
functors, but without the requirements about
preserving composition and identities (they are
not defined in a directed graph).

need to explain what are subobjects and how to take products and pullbacks in
DGph.

Adapting the solution to Exercise 194, we find that the subobjects of G ∈ DGph0

are graphs H with H0 ⊆ G0 and H1 ⊆ G1 such that the source and target maps of H
are restrictions of those of G. Similarly to subcategories, we can obtain H from G by
deleting arrows and objects, and making sure the sources and targets of remaining
arrows also remain.

Again taking inspiration from Cat, Definition 132 (see also Exercise 207) tells us
how to define binary products of graphs if we forget about the composition and
identities.309 309 In other words, the forgetful functor Cat ⇝

DGph preserves binary products.We have not yet defined pullbacks in Cat, but we will do it only for DGph here
because it is easier.

SOL Exercise 309. Given two morphisms f : A → C and g : B → C in DGph, find the
pullback A×C B. Show that the functors (−)0 : DGph⇝ Set and (−)1 : DGph⇝
Set310 preserve pullbacks. 310 These are defined like for Cat in Exercise 131.

The second part of this exercise is a hint for the first part, and it is what we will
use shortly. Unrolling, it means the objects and arrows of A ×C B are defined as
follows:

(A×C B)0 =
{
(x, x′) ∈ A0 × B0 | f0(x) = g0(x′)

}
(A×C B)1 =

{
(e, e′) ∈ A1 × B1 | f1(e) = g1(e′)

}
.

Example 310 (DGph). 311 Fix a graph X, we will find PX. 311 I am writing this as if we are figuring it out
together, but we will use a couple of clever tricks
that come from higher-level arguments that we
cannot give yet (seeing DGph as a functor cate-
gory).

The universal property of PX implies that there is a correspondence between
morphisms 1→ PX and subobjects of X (the terminal object in DGph is the graph
with one object and one arrow). For Cat, we saw that a functor 1 ⇝ C is just a
choice of object in C0, but this is not the case in DGph. A morphism of graphs
does not need to preserve identities, thus a morphism 1 ⇝ X is a choice of object
plus a choice of loop on it. This means in PX, we should have one loop for each
subgraph of X. Unfortunately, this does not tell us that much at this point.312 312 We will come back to this later.

90 ralph sarkis

To give a complete (and enlightening) description of PX, we need to know
what are its objects, its arrows and the source and target of its arrows. We will
make use of a more general consequence of the universal property of PX: for any
graph Y, Hom(Y,PX) ∼= Sub(X × Y). We can find two graphs O and A such that
Hom(O,PX) is in correspondence with the objects of PX and Hom(A, X) with its
arrows.

The graph O only contains one object o and no arrow. A morphism O → PX
is then just a choice of an object that is the image of o. The product X ×O has the
same objects as X but no arrows.313 Therefore, a subgraph of X ×O is a subset of 313 By Definition 132, we have

(X×O)0 = X0 ×O0 = X0 × {o} ∼= X, and

(X×O)1 = X1 ×O1 = X1 ×∅ ∼= ∅.

X0, and we conclude that we can define (PX)0 = P(X0).
The graph A contains two objects and one arrow a between them. It looks like

the graph of 2, but without the identity morphisms. A morphism A → PX is a
choice of an arrow that is the image of a, and a redundant (determined by the first
choice) choice for the image of the source and target of a. The product X × A can
be viewed as two copies of the objects of X (one for each object of A), and for each
arrow f : x → x′ in X, there is an arrow from the first copy of x to the second copy
of x′.314 Here is a drawing of a small example. 314 By Definition 132, we have

(X× A)0 = X0 × A0 = X0 × {1, 2} ∼= X + X,

and all morphisms are of the form (g, a) :
(x, 1)→ (x′, 2) where g : x → x′. Thus,

HomX×A((x, 1), (x′, 2)) = HomX(x, x′),

and all other hom-sets are empty.

• • • • • •

• • •

• • • • • •

X X× A

A subgraph H ↣ X × A can be seen as two subsets H1 and H2 of X0
315 along 315 H1 contains the objects of H belonging to the

first copy of X in X × A and H2 contains the
objects of H in the second copy.

with a set of arrows Ha ⊆ X1 whose sources are in H1 and targets are in H2.
We define (PX)1 to be the set of all such triples (H1, H2, Ha) to ensure we have
Hom(A, X) ∼= (PX)1

∼= Sub(X× A).
It seems more than likely that H1 and H2, being objects of PX, are the source

and target of the arrow (H1, H2, Ha). As a sanity check, let us verify that with
this definition of source and target in PX, the loops are in correspondence with
subgraphs of X; that is the first thing we discovered about PX. If H1 = H2, then
the triple defines the subgraph of X containing all the objects in H1 (or H2) and all
the arrows in Ha. Conversely, given a subgraph of H ↣ X, we let both H1 and H2

be the set of objects of H and Ha be the set of arrows of H.
We seem to be on the right track, and we need one last thing in the definition

of power object,316 the subgraph ∈X of X ×PX. Since we are almost done, we 316 Before the proof of the universal property.

will totally trust our intuition of what ∈X should be without looking for more
justifications. The objects of ∈X are pairs (x, H) where x ∈ X0 and H ⊆ X0, it
makes sense to require that x ∈ H. The arrows of ∈X are pairs (f , (H1, H2, Ha))

where f : x → x′, x ∈ H1, x′ ∈ H2, it makes sense to require that f ∈ Ha.317 We are 317 Recall that every arrow in Ha has its source
in H1 and its target in H2 just like f .ready to prove ∈X ↣ PX satisfies the universal property of the power object of X.

Let Γ be a subgraph of X × Y with inclusion γ : Γ → X × Y.318 We need to 318 We assume without loss of generality that γ is
an inclusion (not an arbitrary monomorphism)
to avoid having different names for stuff in Γ
and stuff in X×Y.

define a morphism fγ : Y → PX making (92) a pullback square, and we also need

my first category theory textbook 91

to prove it is unique. Let us use Exercise 309 to compute the pullback for some yet
undefined fγ, and we will then figure out what constraints we obtain on fγ when
requiring that pullback to be Γ. Hopefully, these will uniquely define fγ.

Call this pullback G. The objects of G are tuples319 319 Recall that ∈X is a subgraph of X×PX.

((x, y), (x′, S)) ⊆ (X×Y)0 × (∈X)0

that satisfy, by commutativity of (92), x = x′ and fγ(y) = S ⊆ X0, and by defi-
nition of ∈X , x′ ∈ S. Since the second pair is determined by the first, we can be
equivalently write

G0 = {(x, y) ∈ X0 ×Y0 | x ∈ fγ(y)}.

Thus, to ensure G has the same objects as Γ, it is enough that fγ satisfies x ∈
fγ(y)⇔ (x, y) ∈ Γ which means fγ(y) = {x ∈ X0 | (x, y) ∈ Γ0}.

The arrows of G are tuples

((g, h), (g′, (H1, H2, Ha))) ⊆ (X×Y)1 × (∈X)1

that satisfy, by commutativity of (92), g = g′ and fγ(h) = (H1, H2, Ha), and by
definition of ∈X , s(g) ∈ H1, t(g) ∈ H2 and g ∈ Ha. Like above, we make things
more concise:

G1 = {(g, h) ∈ X1 ×Y1 | s(g) ∈ fγ(h)1, t(g) ∈ fγ(h)2, g ∈ fγ(h)a}.

To ensure G has the same arrows as Γ, we define fγ(h) be the arrow defined by the
triple

({s(g) | (g, h) ∈ Γ1}, {t(g) | (g, h) ∈ Γ1}, {g | (g, h) ∈ Γ1}) .

Γ G ∈X

X×Y X×PX
idX× fγ

⌟

γ

∼=

(94)

We leave you two final things to check. First, we only exhibited bijections be-
tween the objects and arrows of G and Γ, but in order for (92) to be a pullback,
we have to make sure these bijections assemble into an isomorphism making (94)
commute. Second, for any other fγ, the pullback G is another subobject of X × Y
(i.e. there is no isomorphism as in (94)).

Unlike for exponentials, there is no well-known terminology for a category with
all power objects. This is because power objects are usually studied in categories
with all finite limits, and when such a category has all power objects, it is called a
topos.

Definition 311 (Topos). A finitely complete category where every object has a power
object is called an (elementary) topos.

Digression on Toposes

The goal of this section is to give an equivalent definition of a topos using expo-
nentials and subobject classifiers. The proofs will be done in exercises, so it is your
chance to do some more diagram chasing.

In Set,320 the power object of the terminal set 1 is the set with two elements, 320 Recall it is supposed to be the archetypal
topos.

92 ralph sarkis

∅ ⊆ 1 and 1 ⊆ 1. Now, γ = id1 : 1 → 1 is a monomorphism, so we can see it as a
subobject in SubSet(1) or SubSet(1× 1) via the isomorphism 1 ∼= 1× 1. Using the
universal property of P1, we find that fγ : 1→ P1 sends the single element in 1 to
1 ∈ P1.321 321 More rigorously, it is the universal property

of ∈1 ⊆ 1×P1 which contains the only element
in the R.H.S. You can check that this the only fγ

making (95) a pullback.

1 ∈1

1

1× 1 1×P1
id1× fγ

id1

∼=

⌟
(95)

Notice that fγ is (up to isomorphism) the same function as the subobject classifier
⊤ : 1 → {⊥,⊤}. In fact, in every topos, you can find the subobject classifier this
way.

Example 312 (DGph).

Natural Numbers Object

We end this section with a simpler example still related to toposes to some ex-
tent. Without going into the details, topos theory is a framework to study mathe-
matical logic and set theory with a categorical point of view.322 One of the fun- 322 Ok, just a bit of informal details...

Grothendieck first defined a more constrained
version of topos to help his research in algebraic
geometry.

Lawvere and Tierney enlarged the notion of
topos to the definition we gave, initiating a
deep dive into the strong link between logic and
toposes.

Later, Caramello launched a research pro-
gramme on “toposes as bridges” that uses
toposes to formally translate results and con-
cepts between mathematical theories.

damental building blocks of logic and set theory is the set of natural numbers
N = {0, 1, 2, . . . } and the principle of induction tied to it. Let us restate the lat-
ter categorically.

The set N comes with a distinguished element 0 that starts off inductive argu-
ments. It corresponds to the function 0 : 1 → N that picks out 0. For the inductive
step, we rely on the function succ : N → N that takes n to n + 1.323 The universal

323 The name succ refers to n + 1 being the suc-
cessor of n in N.

property of N is that for any pair of functions z : 1 → X, s : X → X, there exists a
unique f : N→ X making (96) commute.

1 N N

X X

0 succ

z

s

ff (96)

The function f is defined inductively. We let f (0) be the element of X in the image
of z so that the triangle commutes, then we let f (n + 1) = s(f (n)) to ensure the
square commutes. This means for any n ∈ N, f (n) = sn(z) where sn denotes the
composition s◦ n· · · ◦s with s0 = idX . We abstract away from Set.

Definition 313 (NNO). In a category C with a terminal object 1, the natural num-
bers object or NNO (if it exists) is an object N ∈ C0 along with two morphisms
0 : 1 → N and succ : N → N satisfying the following universal property: for any
pair of morphisms z : 1 → X and s : X → X, there exists a unique morphism
! : N→ X making (97) commute.

1 N N

X X

0 succ

z

s

!! (97)

SOL Exercise 314. Show that the NNO in Poset is (N,≤) with the same zero and suc-
cessor functions (now seen as morphisms in Poset).

It is not evident how we could summarize the universal property of an NNO us-
ing a diagram exactly like the others. Still, the definition really feels like a universal
property, so we should not forget this when generalizing what we have seen in all
examples above.

https://en.wikipedia.org/wiki/History_of_topos_theory

my first category theory textbook 93

4.2 Generalization

Diagrams (82), (83), (84), (85), (90) and (93) look so similar that you can try to infer
the following definition unifying all these concepts under one roof.324 324 Although, (85) looks like all arrows have been

reversed, so, you guessed it, it will be an in-
stance of the dual notion.Definition 315 (Universal morphism). If F : D ⇝ C is a functor and X ∈ C0. A

universal morphism from X to F is a morphism a : X → F(A) such that for any
other morphism b : X → F(B), there is a unique morphism f : A → B in D such
that F(f) ◦ a = b, which is summarized in (98).

X FA A

FB B

a

F f
b

f

in C in D

F (98)

The dual notion is a universal morphism from F to X.325 It is a morphism 325 The duality is clear from how (99) is just (98)
with all morphisms reversed. More abstractly,
we can say that a universal morphism from F
to X is a universal morphism from X ∈ Cop to
Fop : Dop ⇝ Cop.

a : F(A) → X such that for any other morphism F(B) → X, there is a unique
morphism f : B → A in D satisfying a ◦ F(f) = b. This is summarized below in
(99).

A FA A

FB B

a

F f
b

f

in Din C

F (99)

Examples 316. In practice and in the literrature, we often say that some construction
satisfies a universal property without referring to the actual universal morphism.
For example, we say that the free monoid satisfies a universal property, while the
less ambiguous thing to say is that the inclusion of a set A into the free monoid A∗

is a universal morphism from the set A to the fogetful functor U : Mon ⇝ Set.326 326 You probably agree that the latter is a mouth-
ful, but the former can feel very vague, espe-
cially when you are not familiar with the con-
struction or universal properties in general.

Let us translate the other examples we gave above with this new terminology.

1. The quotient map from a group G to its abelianization Gab is the universal mor-
phism from G to the forgetful functor Ab⇝ Grp.

2. The set S ⊆ V is a basis for the vector space V when the inclusion S ↪→ V is the
universal morphism from S to the forgetful functor Vectk ⇝ Set.

3. An exponential object is an object AX along with the universal morphism ev from
the functor −× X to A.327 327 This is an example of a universal morphism

from a functor to an object, whereas all the other
examples are universal morphisms from an ob-
ject to a functor.4. A subobject classifier is a morphism ⊤ : 1 ↣ Ω such that the corresponding

function ⊤ : 1 → SubC(Ω) is the universal morphism from 1 to the functor
SubC.

5. A power object of X is an object PX along with the universal morphism ∈X from
1 to SubC(X×−).

94 ralph sarkis

Another common practice is to use the word free in situations where we have a
universal morphism to a forgetful functor (just like the free monoid). For instance,
one could say that Gab is the free abelian group over G, or that V is the free vector
space over its basis. When you have two categories with an obvious forgetful func-
tor between them, it can be useful to figure out if you can construct free objects. We
will get back to this in Chapter 7.

A first approximation of the definition of universality is to say that a universal
property is the property of being a universal morphism from X to F or from F to X.
Unfortunately, this is too constrained. For instance, as we have said, the universal
property of NNOs does not correspond to a universal morphism like that. Another
example is subobject classifiers in categories that are not well-powered. In such
categories, Sub is not a functor into Set,328 so we cannot have a universal morphism 328 There might be another suitable codomain for

that functor, but let us not think too hard about
size issues.

from X to Sub.
In the next section, we will see that universal morphisms are initial or terminal

objects in a comma category. It turns out that in the most general terms, being
universal is best defined as being initial or terminal is some category. It may seem
vague at first, but this perfectly describes all the universal properties we have used
so far that fit the template “for all ... there exists a unique morphism ...”

Definition 317 (Universal property). A universal property is the property of being
initial or terminal in a category.329 329 This rather underwhelming definition is also

what led me to postpone it to this point, after we
have seen many examples and uses of universal
properties.It readily follows (using Proposition 170 and Corollary 171) that universal prop-

erties determine things up to isomorphism.

SOL Exercise 318. Show that in any category C with a terminal object 1 (even if C is
not well-powered), we can define a category whose objects are monomorphisms in
C and ⊤ : X ↣ Ω is terminal if and only if it is the subobject classifier in C. In
particular, if ⊤ is terminal in that category, then X is terminal in C.

4.3 Comma Categories

Before moving on, we are going to have some fun with new definitions that let us
construct new categories out of categories and functors. This section could have
appeared in earlier chapters, but those were already dense, and this section ends
with a more concise definition of universal morphisms as initial or terminal objects
in comma categories.

Definition 319 (Comma category). Given two functors D C EF G , there
is a category F ↓ G,330 called the comma category, whose objects are triples (X, Y, α) 330 Some authors denote this category F/G.

with X ∈ D0, Y ∈ E0 and α : F(X) → G(Y) (in C1), and morphisms between
(X1, Y1, α) and (X2, Y2, β) are pairs of morphisms f : X1 → X2 in D1 and g : Y1 → Y2

my first category theory textbook 95

in E1 yielding a commutative square as in (100).

F(X1) F(X2)

G(Y1) G(Y2)

α

F(f)

β

G(g)

(100)

The identity morphism on (X, Y, α) is the pair (idX , idY) making (101) commute.
The composition of (f , g) and (f ′, g′) is (f ′ ◦ f , g′ ◦ f), it makes the following com-
mute by paving with the commutative squares induced by (f , g) and (f ′, g′).

FX FX

GY GY

α

FidX=idFX

GidY=idGY

α (101)

FX1 FX2 FX3

GY1 GY2 GY3

α γ

F f

Gg

F f ′

Gg′

F(f ′◦ f)

G(g′◦g)

(102)

SOL Exercise 320. Given two functors D C EF G and their comma category
F ↓ G, show there are two forgetful functors UF : F ↓ G ⇝ D and UG : F ↓ G ⇝ E
that send (X, Y, α) to X and to Y respectively.

Example 321 (NNO). Let C be a category with a terminal object and a NNO, and let
1+− : C⇝ C be the maybe functor. The natural numbers object is the initial object
in (1 +−) ↓ idC. The morphisms 0 : 1 → N and succ : N → N can be copaired
in [0, succ] : 1 +N → N that is an object of this comma category. An arbitrary
object of (1 + −) ↓ idC is a morphism f : 1 + X → X which we can decompose
as [f ◦ κ1, f ◦ κX]. Writing z = f ◦ κ1 and s = f ◦ κX , by the universal property of
the NNO, there is a unique morphism making (97) commute. Equivalently, (103)
commutes,331 which means ! is the unique morphism from [0, succ] to f in the 331 If (97) commutes, we have z = ! ◦ 0 and s ◦ ! =

! ◦ succ. Thus, we have

[z, s] ◦ (id1 + !) = [z, s ◦ !]

= [! ◦ 0, ! ◦ succ]
= ! ◦ [0, succ].

Conversely, if (103) commutes, the same deriva-
tion shows [z, s ◦ !] = [! ◦ 0, ! ◦ succ]. By Corol-
lary 268, we must have z = ! ◦ 0 and s ◦ ! =
! ◦ succ.

comma category (1 +−) ↓ idC.

1 +N 1 + X

N X

[0,succ] f=[z,s]

!

id1+!

(103)

Definition 322 (Arrow category). In the setting of Definition 319, if F = G = idC,
then idC ↓ idC is called the arrow category of C and denoted C→. Its objects are
morphisms in C and its morphisms are commutative squares in C.332 It may remind 332 Less concisely, a morphism ϕ : f → g be-

tween morphisms f : X → Y and g : X′ → Y′

is a pair of morphisms ϕX : X → X′ and
ϕY : Y → Y′ making (??) commute.

you of the category defined in Exercise 318.

X Y

X′ Y′

ϕX

f

ϕY

g

(104)
SOL Exercise 323. Let C be a category (note the change of font to distinguish the functors

from their action).

1. Show that id : C⇝ C→ sending X ∈ C0 to idX is functorial.

96 ralph sarkis

2. Show that s : C→ ⇝ C sending f ∈ C→0 to s(f) is functorial.

3. Show that t : C→ ⇝ C sending f ∈ C→0 to t(f) is functorial.

SOL Exercise 324. Show the assignment C 7→ C→ yields a functor Cat⇝ Cat.

Definition 325 (Slice category). In the setting of Definition 319, if F = idC and
G = ∆(X) : 1 ⇝ C is a constant functor selecting one object G(•) = X ∈ C0, then
idC ↓ ∆(X) is called the slice category over X and denoted C/X.333 Its objects are 333 Some authors call this category C over X.

morphisms in C with target X and its morphisms are commutative triangles with
X as a tip as in (105).

A B

X

(105)

Identity morphisms are commutative triangles with the top morphism being iden-
tity and composition is done by combining triangles as in (106).

A B C

X

(106)

SOL Exercise 326 (NOW!). Suppose C has a terminal object 1, what is C/1?

Example 327. Recall that Ω = {⊥,⊤} is the subobject classifier in Set, that is, a
function A → Ω can be identified with the subset f−1(⊤) ⊆ A. Therefore, objects
of Set/Ω can be seen as sets A equipped with a distinguished subset P ⊆ A that
we will call a predicate.334 Suppose (A, PA) and (B, PB) are sets equipped with 334 This terminology comes from the field of

logic. You can think of predicates as things that
might be satisfied or not by elements of a set.
We say that a ∈ A satisfies P if a ∈ P.

predicates, what is a morphism (A, PA) → (B, PB) when we see these as objects in
Set/Ω? It is a function f : A→ B making (107) commute.335

335 Recall that χPA (a) = ⊤ ⇔ a ∈ PA and simi-
larly for PB.A B

Ω
χPA

χPB

f

(107)

Equivalently, f must satisfy a ∈ PB =⇒ f (a) ∈ PB. Logically-minded people might
call Set/Ω the category of predicates and predicate-preserving functions. We can
also view a predicate as a unary relation on A, and we recognize Set/Ω is the
category 1Rel.

SOL Exercise 328. Let C be a category with all finite products and fix n ∈ N. Show the
assignment X 7→ Xn = X× n· · · ×X is functorial. Using this functor and intuition
from the previous example, define nRel as a comma category.

Definition 329 (Coslice category). In the setting of Definition 319, if G = idC and
F = ∆(X) : 1 ⇝ C is a constant functor selecting one object F(•) = X ∈ C0, then
∆(X) ↓ idC is called the coslice category under X and denoted X/C.336 Its objects 336 Some authors call this category C under X.

are morphisms in C with source X and its morphisms are commutative triangles
with X as a tip as in (108).337 337 We leave you to dualize the definition of iden-

tities and composition from the definition of
slice categories.X

A B

(108)

my first category theory textbook 97

Example 330. In the solution to Exercise 197, we saw that a function 1 → X in Set
can be identified with the element of X it picks out. Therefore, objects of 1/Set can
be seen as sets A equipped with a distinguished element a ∈ A. We already have a
name for these things, they are pointed sets. Suppose (A, a) and (B, b) are pointed
sets, what is a morphism (A, a) → (B, b) when we see these as objects of 1/Set? It
is a function f : A→ B making (109) commute.

1

A B
f

a b (109)

Equivalently, f must send a to b, i.e., f (a) = b. You might now recognize that 1/Set
is really the category Set∗ in disguise.

This example suggests we can define an abstract and general way of defining
“pointed” things. However, recall that sometimes, 1 is not the right object to talk
about elements. For instance, in Grp, 1 is also initial so, by the dual to Exercise
326, 1/Grp is the same thing as Grp. Still, we can easily define the category Grp∗
of pointed groups: its objects are pairs (G, g) where G is a group and g ∈ G, and
morphisms (G, g)→ (H, h) are homomorphisms f : G → H satisfying f (g) = h.

SOL Exercise 331. Let Z be the group of integers equipped with addition. Show that
one can define the category Grp∗ as Z/Grp.

SOL Exercise 332. Show that for any category C and object X ∈ C0, the slice category
C/X has a terminal object. State and prove the dual statement.

SOL Exercise 333. Show that the product of f : A → X and g : B → X in C/X exists

if and only if the pullback of A X B
f g

exists in C. State and prove the dual
statement.

These results can be summarized by saying that pullbacks are products in the
slice category, and pushouts are coproducts in the coslice category. This allows us
to define arbitrary (not binary) pullbacks and pushouts as arbitrary products and
coproducts in the slice and coslice categories.338 338 In the literature, these are called fibered

products and fibered sums respectively.

SOL Exercise 334. Given two functors D C EF G , show that an initial object
in F ↓ G is a terminal object in Gop ↓ Fop.

Back to universal properties. We give a more concise definition.

Proposition 335. Let F : D⇝ C be a functor, X ∈ C0 and ∆(X) : 1⇝ C be the constant
functor. A universal morphism from X to F is an initial object in ∆(X) ↓ F.

Proof. Unrolling the definition of initial object in ∆(X) ↓ F, we find that it is a
morphism a : X → F(A) such that for any other morphism b : X → F(B), there
is unique morphism (•, A, a) → (•, B, b), that is, a unique morphism f : A → B

98 ralph sarkis

making (110) commute.

X X

FA FB

a

F f

b

idX

(110)

This is exactly the situation depicted in (98).

Corollary 336 (Dual). A universal morphism from F to X is a terminal object in F ↓ ∆(X).

Proof. We said that a universal morphism from F to X is a universal morphism
from X ∈ Cop to Fop. By the previous result, it is an initial object in ∆(X) ↓ Fop. By
Exercise 334, it is a terminal object in F ↓ ∆(X).

In case a universal property is realized by a universal morphism, we can formally
prove that this property determines an object up to isomorphism.

SOL Exercise 337 (NOW!). Show that if there is a universal morphism from X to F and
one from Y to F, then X ∼= Y. State and prove the dual statement.

We have to postpone to Chapter 6 showing that, as we have claimed, any (co)limit
satisfies a universal property. Still, you might have noticed that our definition of
universal property also uses a special case of (co)limits, that is, initial and termi-
nal objects. What is more, in the following chapters, we will introduce a couple
more concepts which often coincide339 with the concepts of (co)limits and universal 339 By coincide, we mean that one is a special case

of the other or vice-versa or both directions.properties.

5 Natural Transformations
5.1 Functor Categories 99

5.2 The 2–category Cat 107

5.3 Equivalences 114

In the previous chapters, we saw how to use the framework of categories to
do mathematics. While fundamentally the same as “classical” mathematics,340 do- 340 We rely on rigorous logical arguments.

ing mathematics with categories can feel different because we study mathematical
structures from above rather than from the inside. Now, if we want to study group
theory categorically, we have many options:

- We can study single-object categories where every morphism is invertible (de-
loopings of groups) and functors between them (group homomorphisms).341 341 This amounts to doing “classical” group the-

ory.
- We can go one step higher and study the category Grp as a whole. We do not

have access to what is inside a group, only how groups relate to each other.342 342 This has been our point of view until now.

- We can climb another step and study Grp as an object of a category of cate-
gories.343 343 Recall that due to size issues, Grp is not an

object of Cat, but we could carefully define a
category of categories that contains Grp.- In between the previous two items, we can study Grp as a subcategory of Cat.

Taking the delooping is a fully faithful functor B : Grp ⇝ Cat, so we identify
Grp with its image in Cat. We still get to study how groups interact with each
other, but also how they interact with other categories.

The first and last step are particular to groups, not all mathematical structures can
be viewed as a categories. For instance, studying group theory requires to un-
derstand group homomorphisms which are functors, not categories. Taking the
categorical mindset to the extreme,344 we should only have to study how homo- 344 This might seem extreme at this point, but

category theorists can go way further.morphisms relate to each other, but what is a morphism between homomoprhisms?
More generally, what is a morphism between functors?

5.1 Functor Categories

Natural transformations are admittedly what made mathematicians want to study
category theory in the first place. In short, they are morphisms between functors.

The abstract structure of a category is very familiar because it resembles what is
found in algebraic structures such as groups, rings or vector spaces.345 That is to 345 In fact, it is technically called an essentially

algebraic structure.say, it consists of the data of one or more sets with one or more operations satisfying
one or more properties. The intuition for morphisms of algebraic structures ported
well to categories: a functor comrpises functions between the carrier sets (object
and morphisms) that preserve the operations (composition, source and target).

https://ncatlab.org/nlab/show/essentially algebraic theory

100 ralph sarkis

Unfortunately, the definition of a functor does not fit this pattern. It is hard to de-
scribe what is the “structure” of a functor. A first step towards defining morphisms
between functors is to do it in some special cases.

Following the introduction, you can try to find a satisfying definition of mor-
phism between group homomorphisms f , g : G → H,346 and then figure out its 346 Recall that morphisms should compose and

there should be an identity morphism.meaning when f and g are seen as functors BG⇝ BH.
We will proceed with another special case. Given a functor F : C ⇝ Set, we

would like to know what is a subfunctor of F.347 To every object X ∈ C0, F assigns 347 If we had a notion of morphisms between
functors, we could define a subfunctor as a sub-
object, i.e. an equivalence class of monomor-
phisms.

a set FX. It makes sense that a subfunctor F′ sends X to a subset F′X ⊆ FX. To
every f ∈ HomC(X, Y), F assigns a function F f : FX → FY. It makes sense that a
subfunctor F′ sends f to a restriction of F f on the domain F′X. Moreover, we need
to require the image of F′ f (F f restricted to F′X) lies in F′Y, otherwise the target
of F′ f cannot be F′Y. We can summarize the constraints on F′ with the following
commutative square.348 348 (111) commutes if and only if F′ f is the re-

striction of F f to F′X.F′X FX

F′Y FY

F′ f F f (111)

It turns out this is enough to ensure that F′ is a functor. Indeed, F′(idX) is the
identity map on FX restricted to F′X, which is the identity map on F′X. Also, for
any f : X → Y and g : Y → X, F′ f ◦ F′g is the restriction of F(g ◦ f) = Fg ◦ F f to
F′X.349 349 You can check this manually, or pave the fol-

lowing diagram with the squares showing F′ f is
F f restricted to F′X and F′g is Fg restricted to
F′Y.

F′X FX

FY

F′Z FZ

F′(g◦ f) F(g◦ f)

F f

Fg

(112)

Example 338. Let F be the maybe functor on Set and F′ be the identity functor.
One can verify that the family of inclusions of X inside X + 1 for all sets X yields
commutative squares like (111).

We can generalize this to functors with arbitrary codomains.

SOL Exercise 339. Let F : C ⇝ D be a functor. Suppose that for every X ∈ C0, there is
a monomorphism F′X ↣ FX, and for every f ∈ HomC(X, Y), there is a morphism
F′ f making (111) commute. Show that F′ is a functor C⇝ D.

This does not strictly define a subfunctor because we still need to quotient by
some equivalence saying when two functors represent the same subfunctor of F.
Informally, if F′X ↣ X and F′′X ↣ X always represent the same subobject in the
same way, then F′ and F′′ represent the same subfunctor. To make this formal, we
define morphisms of functors in full generality.

Definition 340 (Natural transformation). Let F, G : C ⇝ D be two (covariant)
functors, a natural transformation ϕ : F ⇒ G is a map ϕ : C0 → D1 that sat-
isfies ϕ(A) ∈ HomD(FA, GA) for all A ∈ C0 and makes (113) commute for any
f ∈ HomC(A, B).350 350 When doing proofs relying on naturality (i.e.

the property of being natural), we will use (113)
where we instantiate ϕ, F, G, A, B and f with
the natural transformation, functors, objects and
morphism that is needed in the proof. In order
to make this instantiation less painful, we will
use the shorthand NAT(ϕ, A, B, f) and instanti-
ate the parameters (we can omit F and G be-
cause they should be known from the context).
I will try to be this precise whenever I use natu-
rality, but it is very common to simply write “by
naturality of ϕ” instead of NAT(ϕ, A, B, f).

F(A) G(A)

F(B) G(B)

F(f)

ϕ(A)

G(f)

ϕ(B)

(113)

my first category theory textbook 101

Each ϕ(A) will be called a component of ϕ and may also be denoted with ϕA.

As usual, there is an identity transformation 1F : F ⇒ F351, it sends every object
351 The ⇒ (\Rightarrow) notation is used more
generally for morphisms between morphisms.A to the identity map idF(A). In the setting of Exercise 339, the monomorphisms

F′X ↣ FX are the components of a natural transformation F′ ⇒ F.352 Let us go 352 To actually define subfunctors, we still need
to tell you how to compose natural transforma-
tions, but we are not done with examples.

back to our quest to define morphisms of group homomorphisms.

Example 341. Let f , g : BG ⇝ BH be functors (i.e. group homomorphisms), both
send the unique object ∗ in BG to ∗ in BH. Thus, a natural transformation ϕ : f ⇒ g
has a single component ϕ(∗) : ∗ → ∗ in H, which is simply an element ϕ ∈ H. The
commutativity condition is then exhibited by diagram (114) (which lives in BH) for
any x ∈ G.

∗ ∗

∗ ∗
f (x)

ϕ

g(x)

ϕ

(114)

Recall that composition in BH is just multiplication in H, so naturality of ϕ says
that for any x ∈ G, ϕ · f (x) = g(x) · ϕ. Equivalently, ϕ f (x)ϕ−1 = g(x). Therefore,
g = cϕ ◦ f where cϕ denotes conjugation by ϕ.353 In short, natural transformations 353 In a group (H, ·), conjugation by an element

h ∈ H is the homomorphism ch defined x 7→
hxh−1.

between group homomorphisms correspond to factorizations through conjugations.

Next, a concrete example closer to the general idea of a natural transformation.

Example 342. Fix some n ∈N and define the functor GLn : CRing⇝ Grp by354 354 The map GLn(f) is just the extension of f on
GLn(R) by applying f to every element of the
matrices.R 7→ GLn(R) for any commutative ring R and

f 7→ GLn(f) for any ring homomorphism f .

The second functor is (−)× : CRing ⇝ Grp which sends a commutative ring R
to its group of units R× and a ring homomorphism f to f×, its restriction on R×.
Checking these mappings define two (covariant) functors is left as an exercise, but
one might expect these to be functors as they play nicely with the structure of the
objects involved.

A natural transformation between these two functors is det : GLn ⇒ (−)× which
maps a commutative ring R to detR, the function calculating the determinant of a
matrix in GLn(R). The first thing to check is that detR ∈ HomGrp(GLn(R), R×)
which is clear because the determinant of an invertible matrix is always a unit,
detR(In) = 1 and detR is a multiplicative map.355 The second thing is to verify that 355 i.e. detR(AB) = detR(A)detR(B).

diagram (115) commutes for any f ∈ HomCRing(R, S):

GLn(R) R×

GLn(S) S×

detR

GLn(f) f×= f |R×

detS

(115)

We will check the claim for n = 2, but the general proof should only involve more

102 ralph sarkis

notation to write the bigger expressions, no novel idea. Let a, b, c, d ∈ R, we have

(detS ◦GL2(f))

([
a b
c d

])
= detS

([
f (a) f (b)
f (c) f (d)

])
= f (a) f (d)− f (b) f (c)

= f (ad− bc)

= f×(ad− bc)

= (f× ◦ detR)

([
a b
c d

])
.

We conclude that the diagram commutes and that det is indeed a natural transfor-
mation.356 356 Modulo the cases n > 2.

SOL Exercise 343. Recall the functors s, t : C→ ⇝ C defined in Exercise 323. Show that
ϕ : s⇒ t defined by ϕ(f) = f for any f ∈ C→0 = C1 is a natural transformation.

Because naturality is such a central idea to category theory (just as important as
functoriality), we often use it post-rigorously. For instance, when studying a math-
ematical object X, we might follow some process to obtain another object F(X), and
another construction might yield G(X), then we find a process ϕ to go from F(X)

to G(X) and we say ϕ is natural in X. With these last three words, we implicitly
mean a lot of things: that X is an object of some category, that F and G are functors
from that category, and that ϕ is the component at X of a natural transformation
F ⇒ G.

It is also possible that F and G take more than one parameter.

SOL Exercise 344 (NOW!). Let F, G : C× C′ ⇝ D be two functors. Show that a family{
ϕX,Y : F(X, Y)→ G(X, Y) | X ∈ C0, Y ∈ C′0

}
is a natural transformation if and only if for any X ∈ C0 and Y ∈ C′0, both357 357 Recall the definition of F(X,−) and F(−, Y)

from Exercise 136. If only one of ϕX,− or ϕ−,Y
is natural, we say that ϕ is natural in X only,
respectively Y only. In words, this exercise says
that ϕ is natural in X and Y if and only if it is
natural in X and natural in Y.

ϕX,− : F(X,−)⇒ G(X,−) and ϕ−,Y : F(−, Y)⇒ G(−, Y)

are natural.

Examples 345 (Natural isomorphisms). A natural isomorphism is a natural trans-
formation whose components are all isomorphisms. We have already encountered
several of them.

1. When defining exponentials, we saw that currying is a bijection HomC(B ×
X, A) ∼= HomC(B, AX). It turns out this is a natural isomorphism from the
functor HomC(−× X, A) : Cop ⇝ Set to HomC(−, AX) : Cop ⇝ Set. We simply
need to check the square below commutes for any f : B→ B′.358 358 Because these functors have Cop as a source,

note the reversal the arrows

HomC(B× X, A) HomC(B, AX)

HomC(B′ × X, A) HomC(B′, AX)

−◦ f−◦(f×idX)

g 7→λg

g 7→λg

(116)

https://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/

my first category theory textbook 103

Starting with g in the bottom left, we need to prove λg ◦ f = λ (g ◦ (f × idX)).
The universal property of AX tells us ev ◦ (λg× idX) = g. Pre-composing with
f × idX , we find

g ◦ (f × idX) = ev ◦ (λg× idX) ◦ (f × idX) = ev ◦ ((λg ◦ f)× idX),

thus both λg ◦ f and λ (g ◦ (f × idX)) make (117) commute, and they must be
equal by uniqueness.

A AX × X

B× X
g◦(f×idX)

λg◦ f=λ(g◦(f×idX))

ev

(117)

2. Without giving all the details, we note that the bijections

HomSet(A, M) ∼= HomMon(A∗, M), and

HomGrp(G, A) ∼= HomAb(Gab, A)

are also natural in A and M, and A and G respectively. They are the components
of natural isomorphisms359 359 Where U denotes the forgetful functors

Mon⇝ Set and Ab⇝ Grp respectively.

HomSet(−, U−) ∼= HomMon(−∗,−), and

HomGrp(−, U−) ∼= HomAb(−ab,−).

In particular, the assignments A 7→ A∗ and G 7→ Gab are functorial, and these
natural isomorphisms are witnesses to these functors being left adjoints to the
corresponding forgetful functors.360 360 Adjoints are the topic of Chapter 7, where we

will study more of these kind of natural isomor-
phisms.Now, coming back to our idea that natural transformations are morphisms of

functors, we shall explain how they compose.

Definition 346 (Vertical composition). Let F, G, H : C⇝ D be parallel functors and
ϕ : F ⇒ G and η : G ⇒ H be two natural transformations. The vertical composition
of ϕ and η, denoted η · ϕ : F ⇒ H is defined by (η · ϕ)(A) = η(A) ◦ ϕ(A) for all
A ∈ C0. If f : A → B is a morphism in C, then diagram (118) commutes by
naturality of ϕ and η, showing that η · ϕ is a natural transformation from F to H. The notation · is not widespread, most authors

use ◦ because vertical composition is the com-
position in a functor category. I believe the dis-
tinction is helpful as you learn this material.F(A) G(A) H(A)

F(B) G(B) H(B)

ϕ(A)

F(f)

η(A)

G(f) H(f)

ϕ(B) η(B)

(118)

The meaning of vertical will come to light when horizontal composition is intro-
duced in a bit.

Definition 347 (Functor categories). For any two categories C and D, there is a
functor category denoted [C, D].361 Its objects are functors from C to D, its mor- 361 Some authors denote it DC, analogously to

the exponential of sets. In fact, Cat is cartesian
closed and [C, D] is the exponential. We give
most of the proof in Example 373.5.

phisms are natural transformations between such functors, and the composition is
the vertical composition defined above. We leave you to check the associativity of
· as it quickly follows from associativity of composition in D. Similarly, you can
verify the identity morphism for a functor F is 1F.

104 ralph sarkis

SOL Exercise 348 (NOW!). Show that natural isomorphisms are precisely the isomor-
phisms in functor categories. Functors that are naturally isomorphic are es-

sentially the same functor; they send the same
object to isomorphic objects and the same mor-
phism to morphisms that are well-behaved un-
der composition with isomorphisms between
the source and targets. This suggests that a nat-
ural isomorphism between functors transfers all
the properties, we check some of them in Exer-
cise 349.

SOL Exercise 349. Let F, G : C ⇝ D be two naturally isomorphic functors. Show that if
F is full/faithful/(co)continuous, then so is G.

Example 350. Recall that a left action of a group G on a set S is just a functor BG⇝
Set. Now, between two such functors F, F′ ∈ [BG, Set], a natural transformation

is a single map σ : F(∗) → F′(∗) such that σ ◦ F(g) = F′(g) ◦ σ for any g ∈ G.
In other words, denoting · for both group actions on F(∗) and on F′(∗), σ satisfies
σ(g · x) = g · (σ(x)) for any g ∈ G and x ∈ F(∗). In group theory, such a map is
called G–equivariant.

Therefore, the category [BG, Set] can be identified as the category of G–sets (sets
equipped with an action of G) with G–equivariant maps as the morphisms.

Examples 351. We can recover constructions we have seen before by studying cate-
gories of functors with a simple domain.

1. The terminal category 1 has a single object • and no morphism other than the
identity. Recall that for any category C, a functor F : 1⇝ C is a simply a choice
of object F(•) ∈ C0 because F(id•) must be equal to idF(•). If F, G ∈ [1, C], then
a natural transformation ϕ : F ⇒ G is simply a choice of morphism ϕ : F(•) →
G(•) because the naturality square (119) for the only morphism id• is trivially
commutative. Since vertical composition is just componentwise composition,
[1, C] can be identified with the category C itself.

F(•) F(•)

G(•) G(•)

F(id•)

ϕϕ

G(id•)

(119)

2. Similarly, we can see a functor F : 1 + 1 ⇝ C362 as a choice of two objects F(•1) 362 Recall 1 + 1 is the category depicted in (5).

and F(•2) (not necessarily distinct), and a natural transformation ϕ : F ⇒ G
between two such functors as a choice of two morphisms ϕ1 : F(•1) → G(•1)

and ϕ2 : F(•2)→ G(•2). Therefore, we infer that [1 + 1, C] can be identified with
C× C.

3. Let us go one level harder. A functor F : 2 ⇝ C363 is a choice of two objects FA 363 Recall 2 is the category depicted in (6).

and FB as well as a morphism F f : FA→ FB. It can also be seen as a single choice
of morphism F f because FA and FB are determined to be the source and target of
F f respectively. A natural transformation ϕ : F ⇒ G between two such functors
is not simply a choice of two morphisms ϕA : FA → GA and ϕB : FB → GB
because, while the naturality squares for idA and idB trivially commute, the
naturality square (120) for f is an additional constraint on ϕ. Namely, it says
(ϕA, ϕB) makes a commutative square with F f and G f , hence we can identify
[2, C] with the arrow category C→.

FA FB

GA GB

F f

ϕBϕA

G f

(120)

SOL Exercise 352. Show that the opposite of [C, D] is [Cop, Dop].

Viewing any category as a functor category as we did in the previous example
has one major consequence formalized in the following results. In short, it says you
can infer a lot of things from [C, D] by studying D. For instance, if D has all binary
products, it follows that the product of functors F and G in [C, D] is the functor
sending X ∈ C0 to FX× GX and f ∈ C1 to F f × G f .364 364 Note that this is not the functor F × G, the

latter has type C× C⇝ D×D.

my first category theory textbook 105

Theorem 353. Let C, D and J be categories. If all limits of shape J exist in D, then all such
limits also exist in [C, D]. Moreover, for any diagram F : J ⇝ [C, D] and for all X ∈ C0,
we have365 365 This equation is commonly referred to as

“limits in functor categories are computed
pointwise”.

(limJF)(X) = limJ(F(−)(X)).

Proof. Let us explain why the equation above makes sense (i.e. is well-typed).
On the L.H.S., since F is a diagram in [C, D], its limit will be an object of [C, D],

namely a functor limJF : C⇝ D. Thus if X ∈ C0, then (limJF)(X) is an object in D.
On the R.H.S., fix X ∈ C0 and observe that F(−)(X) can be seen as a diagram

J ⇝ D. Indeed, for A ∈ J0, F(A) is a functor from C to D, so F(A)(X) ∈ D0, and
for a : A → B ∈ J1, F(a) is a natural transformation from F(A) to F(B), so F(a)(X)

(the component of F(a) at X) is a morphism F(A)(X) → F(B)(X) in D. Then, the
limit of F(−)(X) is an object in D (it exists by hypothesis).

We will define a functor L that sends X to limJ(F(−)(X)), and we will show it is
the limit of F, i.e. L = limJF.

LX

F(A)(X) F(B)(X)

LY

F(A)(Y) F(B)(Y)

πA,X πB,X

F(a)(X)

πA,Y πB,Y

F(a)(Y)

(121)First, we need to define the action of L on morphisms. Let f : X → Y, by defini-
tion, LX and LY are limits of F(−)(X) and F(−)(Y) respectively, the limit cones are
depicted in (121). For any a : A → B, the naturality of F(a) means the front square
in (122) commutes, so the family {F(A)(f) ◦ πA,X : LX → F(A)(Y)}A∈J0 forms a
cone over F(−)(Y), and the universal property of LY yields a unique morphism L f
making all of (122) commute.

LX

F(A)(X) F(B)(X)

LY

F(A)(Y) F(B)(Y)

πA,X πB,X

F(a)(X)

πA,Y πB,Y

F(a)(Y)

F(A)(f) F(B)(f)

L f (122)

It follows from uniqueness that L(idX) = idLX and L(g ◦ f) = Lg ◦ L f (check that
these make (123) and (124) commute). Thus, we have our functor L : C⇝ D.

LX

F(A)(X) F(B)(X)

LX

F(A)(X) F(B)(X)

πA,X πB,X

F(a)(X)

πA,X πB,X

F(a)(X)

F(A)(idX) F(B)(idX)

idLX
(123)

LX

F(A)(X) F(B)(X)

LY

F(A)(Y) F(B)(Y)

LZ

F(A)(Z) F(B)(Z)

πA,X πB,X

F(a)(X)

πA,Y πB,Y

F(a)(Y)

F(A)(f) F(B)(f)
L f

F(A)(g) F(B)(g)

F(a)(Z)

πA,Z πB,Z

Lg

(124)

Next, the back squares in (122) witness the fact that for any A ∈ J0, the mor-
phisms πA,X are components of a natural transformation πA : L ⇒ F(A). More-
over, for any a : A → B ∈ J1, F(a) · πA = πB holds because the commutativity of
the triangles in (122) means for every X ∈ C0, F(a)(X) · πA,X = πB,X . We conclude
that the family {πA : L ⇒ F(A)}A∈J0 forms a cone over F. It remains to prove this
is the limit cone.

Suppose {ϕA : L′ ⇒ F(A)}A∈J0 is another cone over F, that is F(a) · ϕA = ϕB

for any a : A → B ∈ J1. Looking at the components at X, we find that {ϕA(X) :
L′X → F(A)(X)}A∈J0 forms a cone over F(−)(X). Thus, the universal property of

106 ralph sarkis

LX yields a unique morphism !X making (125) commute.

L′X LX

F(B)(X)

F(A)(X)

πA,X

πB,X

F(a)(X)

ϕB(X)

ϕA(X)

!X

(125)

To show !X is natural in X, we need to show L f ◦ !X = !Y ◦ L′ f for all f : X → Y.
Notice that the target of both sides is LY, so it might be possible to use the universal
property of LY to conclude the equation holds. More precisely, we need to find a
cone over F(−)(Y) with tip L′X and show L f ◦ !X and !Y ◦ L′ f are morphisms of
cone, then by uniqueness they must be the same morphism.

The process we used to make the cone over F(−)(Y) with tip LX in (122) still
works for L′X. We get a cone {F(A)(f) ◦ ϕA(X) : L′X → F(A)(Y)}A∈J0 . Now,
the following derivations show that L f ◦ !X and !Y ◦ L′ f are morphisms of cone as
depicted in (126). We conclude ! is natural, so we have a cone morphism ! : L′ ⇒ L.

πA,Y ◦ L f ◦ !X = F(A)(f) ◦ πA,X ◦ !X (122)

= F(A)(f) ◦ ϕA(X) (125)

πA,Y ◦ !Y ◦ L′ f = ϕA(Y) ◦ L′ f (125)

= F(A)(f) ◦ ϕA(X) NAT(ϕ, X, Y, f)

L′X LX LY

F(A)(Y)

L′X L′Y LY

F(A)(Y)

!Y

πA,Y

L′ f

F(A)(f)◦ϕA(X)

F(A)(f)◦ϕA(X) πA,Y

!X L f

(126)

Finally, for any other cone morphism ? : L′ ⇒ L, the component of ? at X make
(125) commute, but !X is unique with this property. Hence ?X = !X for all X ∈ C0,
and we conclude ? and ! coincide. We conclude that limJF = L.

Corollary 354 (Dual). Let C, D and J be categories. If all colimits of shape J exist in D,
then all such colimits also exist in [C, D], and they are computed pointwise.366 366 Uses Exercise 352.

If you are craving some more diagram chasing or you want to get more familiar
with natural transformations and functor categories, you can try doing the follow-
ing exercises without using Theorem 353 or Corollary 354.367 367 You can essentially reproduce the same proof

with the shape J fixed.
SOL Exercise 355. Suppose D has a terminal object 1. Show the constant functor ∆(1) :

C⇝ D is terminal in [C, D]. State and prove the dual statement.

SOL Exercise 356. Suppose D has all binary products and let F, G ∈ [C, D]0. Show that
sending X ∈ C0 to FX×GX and f ∈ C1 to F f ×G f is a functor and it is the product
of F and G in [C, D]. State and prove the dual statement.

SOL Exercise 357. Suppose D has all equalizers and let ϕ, ψ : F ⇒ G be two parallel
natural transformations. For X ∈ C0, let (127) be the equalizer in D. Find the
action of E on morphisms that make E into a functor C ⇝ D and e into a natural
transformation e : E ⇒ F. Finally, show that e is the equalizer of ϕ and ψ in [C, D].
State and prove the dual statement.

E(X) FX GX
ψX

eX
ϕX

(127)

my first category theory textbook 107

SOL Exercise 358. Suppose D has all pullbacks and let ϕ : F ⇒ G ⇐ H : ψ be a cospan
of natural transformation. For X ∈ C0, let (128) be the pullback in D. Find the
action of P on morphisms that makes P into a functor C ⇝ D and ℓ : P ⇒ F and
r : P ⇒ G into natural transformation. Finally, show that P with ℓ and r is the
pullback of that cospan. State and prove the dual statement.

P(X) HX

FX GX

ψX

ϕX

ℓX

rX

⌟ (128)

Example 359 ((Co)limits in DGph).

Another simple application of viewing a category as a functor category is to look
at the evaluation functors.

SOL Exercise 360. For any object X ∈ C0, show that evaluation at X is a functor −X :
[C, D]⇝ D. It sends F to FX and ϕ to ϕX .

We leave you to check that the source and target functors s, t : C→ ⇝ C are
naturally isomorphic to the functors evaluating at A ∈ 20 and B ∈ 20 respectively.368 368 This offers an alternative way to show s and t

are functors in one go.Evaluating at the single object in BG yields a forgetful functor [BG, Set] ⇝ Set. It
sends a group action to the underlying set and an equivariant map to the underlying
function.

Using Exercise 137, we can also conclude there is a functor Ev : C × [C, D] ⇝
D.369 It sends (X, F) to F(X) and (f , ϕ) : (X, F)⇒ (Y, G) to ϕY ◦ F(f) = G(f) ◦ ϕX . 369 For a fixed X ∈ C0, we just saw Ev(X,−) =

−X is a functor. For a fixed F ∈ [C, D]0,
Ev(−, F) is simply the functor F. The equation

Ev(Y, ϕ) ◦ Ev(f , F) = ϕY ◦ F(f)

= G(f) ◦ ϕX

= Ev(f , G) ◦ Ev(X, ϕ)

holds by NAT(ϕ, X, Y, f)

We can now restate Theorem 353 and Corollary 354 by saying that when D has
all (co)limits of shape J, then Ev preserves (co)limits in its second component, i.e.
for any X ∈ C0

Ev(X, limJF) = limJEv(X, F−).

5.2 The 2–category Cat

It is now time to build intuition for the horizontal composition of natural transfor-
mations which will ultimately lead to the notion of a 2–category.

Definition 361 (The left action of functors). Let F, F′ : C ⇝ D, G : D ⇝ D′ be
functors and ϕ : F ⇒ F′ a natural transformation as summarized in (129).370 370 Using squiggly arrows for functors in dia-

grams is very non-standard, but I believe it
helps remember what kind of objects we are
dealing with. Moreover, since these diagrams
are not commutative, it makes a good contrast
with the plain arrow notation which was mostly
used for commutative diagrams.

C D D′

F

G

F′

ϕ (129)

The functor G acts on ϕ by sending it to Gϕ := A 7→ G(ϕ(A)) : C0 → D′1. Show-
ing that (130) commutes for any f ∈ HomC(A, B) will imply that Gϕ is a natural
transformation from G ◦ F to G ◦ F′ .

(G ◦ F)(A) (G ◦ F′)(A)

(G ◦ F)(B) (G ◦ F′)(B)

(G◦F)(f)

Gϕ(A)

(G◦F′)(f)

Gϕ(B)

(130)

108 ralph sarkis

Consider this diagram after removing all applications of G, by naturality of ϕ, it is
commutative. Since functors preserve commutativity, the diagram still commutes
after applying G, hence Gϕ : G ◦ F ⇒ G ◦ F′ is indeed natural.371 371 More concisely, we apply G to

NAT(ϕ, A, B, f) to obtain (130).We leave you to check this constitutes a left action, namely, for any G : D ⇝ D′,
G′ : D′ ⇝ D′′ and ϕ : F ⇒ F′,

idDϕ = ϕ and G′(Gϕ) = (G′ ◦ G)ϕ.

Definition 362 (The right action of functors). Let F, F′ : C ⇝ D, H : C′ ⇝ C be
functors and ϕ : F ⇒ F′ a natural transformation as summarized in (131).

C′ C D

F

F′

H
ϕ (131)

The functor H acts on ϕ by sending it to ϕH := A 7→ ϕ(H(A)) : C′0 → D1.
Showing that (132) commutes for any f ∈ HomC′(A, B) will imply that ϕH is a
natural transformation from F ◦ H to F′ ◦ H.

(F ◦ H)(A) (F′ ◦ H)(A)

(F ◦ H)(B) (F′ ◦ H)(B)

(F◦H)(f)

ϕH(A)

(F′◦H)(f)

ϕH(B)

(132)

Commutativity of (132) follows by naturality of ϕ: change f in diagram (113) with
the morphism H(f) : H(A)→ H(B), i.e. (132) is NAT(ϕ, HA, HB, H f).

We leave you to check this constitutes a right action, namely, for any H : C′ ⇝ C,
H′ : C′′ ⇝ C′ and ϕ : F ⇒ F′,

ϕidC = ϕ and (ϕH)H′ = ϕ(H ◦ H′).

Proposition 363. The two actions commute, i.e. in the setting of (133), G(ϕH) =

(Gϕ)H.372 372 For this reason, we will drop all the paren-
theses from such expressions. We will also
drop the ◦ for composition of functors. All in
all, expect to find expressions like G′GϕHH′

and infer the natural transformation A 7→
G′(G(ϕ(H(H′(A))))).

C′ C D D′

F

G

F′

H
ϕ (133)

Proof. In both the L.H.S. and the R.H.S., an object A ∈ C′0 is sent to G(ϕ(H(A))).

SOL Exercise 364 (NOW!). In the setting of (133), show that the assignments F 7→ G ◦
F ◦ H and ϕ 7→ GϕH make a functor G(−)H : [C, D]⇝ [C′, D′].

A very useful consequence is that for any commutative diagram in [C, D], we
can pre-compose and post-compose with any functors and still obtain a commu-
tative diagram. For instance, if (134) commutes in [C, D], then for any functors
H : C′ ⇝ C and G : D⇝ D′ (135) commutes.373 373 We will often use this property by writing

things like “apply G(−)H to (134)” to use the
commutativity of (135) in a proof.

my first category theory textbook 109

X Y

X′ Y′

ϕ

η

ϕ′

η′

(134)
G ◦ X ◦ H G ◦Y ◦ H

G ◦ X′ ◦ H G ◦Y′ ◦ H

GϕH Gϕ′H

Gη′H

GηH

(135)

We will refer to these two actions as the biaction of functors on natural transfor-
mations and they will motivate the definition of another way to compose natural
transformations.

Let C, D and E be categories, H, H′ : C⇝ D and G, G′ : D⇝ E be functors and
ϕ : H ⇒ H′ and η : G ⇒ G′ be natural transformations. This is summarized in
(136).

C D E

H

H′ G′

G

ϕ η (136)

The ultimate goal is to obtain a composition of ϕ and η that is a natural transforma-
tion G ◦H ⇒ G′ ◦H′. Note that the biaction defined above yields four other natural
transformations:

Gϕ : G ◦ H ⇒ G ◦ H′ ηH : G ◦ H ⇒ G′ ◦ H

G′ϕ : G′ ◦ H ⇒ G′ ◦ H′ ηH′ : G ◦ H′ ⇒ G′ ◦ H′.

All of the functors involved go from C to E, so all four natural transformations fit
in diagram (137) that lives in the functor category [C, E].

G ◦ H G ◦ H′

G′ ◦ H G′ ◦ H′

Gϕ

ηH ηH′

G′ϕ

(137)

At first glance, this suggests two different definitions for the horizontal compo-
sition, that is, the composition of the top path (ηH′ · Gϕ) or the composition of the
bottom path (G′ϕ · ηH). Surprisingly, both definitions coincide.

Lemma 365. Diagram (137) commutes, i.e. ηH′ · Gϕ = G′ϕ · ηH.374 374 Similarly to NAT, we will refer to the commu-
tativity of (137) with HOR(ϕ, η). We use HOR
because this lemma is crucial in the definition of
HORizontal composition.

Proof. Fix an object A ∈ C0. Under ηH′ · Gϕ, it is sent to η(H′(A)) ◦ G(ϕ(A)) and
under G′ϕ · ηH, it is sent to G′(ϕ(A)) ◦ η(H(A)). Thus, the proposition is equivalent
to saying diagram (138) is commutative (in E) for all A ∈ C0.

(G ◦ H)(A) (G ◦ H′)(A)

(G′ ◦ H)(A) (G′ ◦ H′)(A)

G(ϕ(A))

η(H(A)) η(H′(A))

G′(ϕ(A))

(138)

This follows from NAT(η, HA, H′A, ϕ(A)).

110 ralph sarkis

Definition 366 (Horizontal composition). In the setting described in (136), we define
the horizontal composition of η and ϕ by η ⋄ ϕ = ηH′ · Gϕ = G′ϕ · ηH.375 375 The ⋄ notation is not standard but there

are no widespread symbol denoting horizontal
composition. I have mostly seen ∗ or plain jux-
taposition. Hopefully, you will encounter pa-
pers/books clear enough that you can typecheck
to find what composition is being used.

One crucial point we have made in earlier chapters is that a notion of composition
must satisfy associativity and have identities. We will show the former right after
you show the latter.

SOL Exercise 367. Let H : C′ ⇝ C, F, F′ : C ⇝ D and G : D ⇝ D′ be functors and
ϕ : F ⇒ F′ be a natural transformation (as in (133)). Show that ϕ ⋄ 1H = ϕH and
1G ⋄ ϕ = Gϕ. Infer that 1idC is the identity at C for ⋄.

Proposition 368. In the setting of (139), ψ ⋄ (η ⋄ ϕ) = (ψ ⋄ η) ⋄ ϕ.

C D E F

H

H′ G′

G K

K′

ϕ η ψ (139)

Proof. Similarly to how we constructed diagram (137) previously, we can use the
biaction of functors and composition of functors to obtain the following diagram in
[C, F].376 376 All ◦’s are left out for simplicity.

Here is how each face commutes.

Top: HOR(ψ, Gη)

Bottom: HOR(ψ, G′η)

Left: HOR(ψ, ηH)

Right: HOR(ψ, ηH′)

Front: HOR(Kη, ϕ)

Back: HOR(K′η, ϕ)

K′GH K′GH′

KGH KGH′

K′G′H K′G′H′

KG′H KG′H′

K′ηH

K′Gϕ

K′ηH′
KGϕ

KηH

ψGH

ψGH′

K′G′ϕ

KG′ϕ

ψG′H KηH′

ψG′H′

(140)

As detailed in the margin, this commutes because each face of the cube corresponds
to a variant of diagram (137) (with some substitutions and application of a functor)
and combining commutative diagrams yields commutative diagrams. Then, it fol-
lows that ⋄ is associative because377 ψ ⋄ (η ⋄ ϕ) is the diagonal of the front face 377 We could have drawn only the front and right

face, but the cube is cooler.followed by the bottom right arrow, and (ψ ⋄ η) ⋄ ϕ is the top front arrow followed
by the diagonal of the right face.

There is one last thing to conclude that Cat is a 2–category, namely, that the
vertical and horizontal compositions interact nicely.

Proposition 369 (Interchange identity). In the setting of (142), the interchange iden-
tity holds:

(η′ · η) ⋄ (ϕ′ · ϕ) = (η′ ⋄ ϕ′) · (η ⋄ ϕ). (141)

It is in the drawing of (142) that the intuition be-
hind the terms vertical and horizontal is taken.

C D EH′

G′′

G

G′

H′′

H

ϕ

ϕ′

η

η′
(142)

my first category theory textbook 111

Proof. Akin to the other proofs, this is a matter of combining the right diagrams.
After combining the diagrams in [C, E] corresponding to η ⋄ ϕ and η′ ⋄ ϕ′, it is easy
to see that the R.H.S. of (141) is the morphism going from G ◦H to G′′ ◦H′′ in (143).

G ◦ H G ◦ H′

G′ ◦ H G′ ◦ H′ G′ ◦ H′′

G′′ ◦ H′ G′′ ◦ H′′

Gϕ

ηH ηH′

G′ϕ
η′H′

G′ϕ′

η′H′′

G′′ϕ′

(143)

Moreover, the diagram corresponding to the L.H.S. can be factored with the follow-
ing equations (they follow from Exercise 364) yielding (144). G ◦ H G ◦ H′ G ◦ H′′

G′ ◦ H G′ ◦ H′′

G′′ ◦ H G′′ ◦ H′ G′′ ◦ H′′

Gϕ

ηH

Gϕ′

ηH′′

η′H η′H′′

G′′ϕ G′′ϕ′

(144)

(η′ · η)H = η′H · ηH (η′ · η)H′′ = η′H′′ · ηH′′

G(ϕ′ · ϕ) = Gϕ′ · Gϕ G′′(ϕ′ · ϕ) = G′′ϕ′ · G′′ϕ

Combining (143) and (144), we obtain (145) from which the interchange identity
readily follows.378 378 The top right and bottom left square com-

mute by HOR(η, ϕ′) and HOR(η′, ϕ) respec-
tively. This implies all of (145) commutes and we
have seen that the path from G ◦ H to G′′ ◦ H′′

can be seen as the R.H.S. of (141) by looking at
(143) or the L.H.S. by looking at (144). Thus, we
infer the satisfaction of (141).

G ◦ H G ◦ H′ G ◦ H′′

G′ ◦ H G′ ◦ H′ G′ ◦ H′′

G′′ ◦ H G′′ ◦ H′ G′′ ◦ H′′

Gϕ

ηH ηH′

Gϕ′

ηH′′

G′ϕ
η′H η′H′

G′ϕ′

η′H′′

G′′ϕ G′′ϕ′

(145)

All of the structure we have added on top of the category Cat can be abstracted
away by saying that it is 2–category.

Definition 370 (Strict 2–cateory). A strict 2–category consists of

• a category C,

• for every A, B ∈ C0 a category C(A, B) with HomC(A, B) as its objects and
morphisms are called 2–morphisms (composition is denoted · and identities 1),

• a category with C0 as its objects, where the morphisms are pairs of parallel
morphisms of C along with a 2–morphism between them. A morphism in this
category is also called a 2–cell. The identity 2–cell at A ∈ C0 is the pair (idA, idA)

and the 2–morphism 1idA and composition of 2–cells is denoted ⋄),

such that the interchange identity (141) holds.379 379 The interchange identity does not come out
of nowhere, it is equivalent to the composi-
tion ◦ being a functor C(B, C) × C(A, B) ⇝
C(A, C) that acts on 2–morphisms by ⋄ for ev-
ery A, B, C ∈ C0. We leave you to show this in
the special case of the 2–category of categories
in Exercise 372.

112 ralph sarkis

Digression on Higher/Enriched Categories

This book is not the place to further study 2–categories, but we can say a few inter-
esting things about them. There are notions of morphisms between 2–categories
(called 2–functors) and morphisms between them (called 2–natural transforma-
tions). The latter can be composed in three different ways (analog to vertical and
horizontal composition for 2–morphisms) and all possible compositions interact
well together. In particular,380 there is a unique 2–natural transformation that is 380 There are several so-called coherence axioms

that describe how all compositions interact, but
we state only one of them.

the composition of all 2–natural transformations in (146) (there are multiple ways
to obtain it, depending on what compositions you do in what order, but as in the
interchange identity, we require them to lead to the same 2–natural transformation).

• • •
⇛ ⇛ ⇛ ⇛

⇛ ⇛ ⇛ ⇛

(146)

The category of 2–categories with 2–functors and 2–natural transformations is now
an instance of a 3–category. The field of higher category theory studies the general-
izations of this to n–categories for any n (even n = ∞!). However, most of higher
category theory drops the strict part of our definition of 2–category because this con-
dition is too strong. Very briefly, they allow the properties of composition, namely
associativity, identities and interchange, to hold up to isomorphisms.

There is a relatively simple way to define strict n–categories using enriched cat-
egory theory.381 The definition of a locally small category can be seen as entirely 381 I hope you can indulge this continued digres-

sion. While higher and enriched category theory
are not as indispensible as basic category theory,
they are quite powerful. We will not see how
in this book, but I think these two little teasers
might inspire some readers to find out by them-
selves.

taking place in the category Set. From this point of view, a locally small category
is a collection C0 of objects equipped with

• a set HomC(A, B) ∈ Set0 for every A, B ∈ C0,

• a function ◦A,B,C ∈ HomSet (HomC(B, C)×HomC(A, B), HomC(A, C)) for every
A, B, C ∈ C0,

• and a function idA ∈ HomSet (1, HomC(A, A)),

with conditions that can be stated as commutative diagrams in Set. Commutativity
of (147) and (148) means that the identity morphisms are neutral with respect to
composition and commutativity of (149) means composition is associative.

HomC(B, C)× 1 HomC(B, C)×HomC(B, B)

HomC(B, C)

◦B,B,C

id×idB

πHomC(B,C)
(147)

my first category theory textbook 113

HomC(B, B)×HomC(A, B) HomC(A, B)× 1

HomC(A, B)
πHomC(A,B)

◦A,B,B

idB×id

(148)

HomC(C, D)×HomC(B, C)×HomC(A, B) HomC(B, D)×HomC(A, B)

HomC(C, D)×HomC(A, C) HomC(A, D)

id×◦A,B,C

◦A,C,D

◦B,C,D×id

◦A,B,D

(149)
It turns out we can abstract the properties of 1 and × that ensure we can do category
theory: we say that (Set,×, 1) is a monoidal category.382 Now, enriched category 382 The specific properties are not too relevant for

us right now, but know that × and 1 are called
the tensor and unit of the monoidal category.

theory is done by replacing Set with another category that has a monoidal struc-
ture.

Examples 371. 1. The category 1 is a monoidal category with the tensor and unit
being trivial (there is only one object, so there is no choice). A category en-
riched in 1 is simply a collection C0 because there is no choice when defining
HomC(A, B) ∈ 10, ◦A,B,C ∈ 11 and idA ∈ 11.

2. Recall that categories can be seen as generalizations of monoids where elements
have a source and target, and you can only multiply elements when they are com-
posable. If we started from rings instead, we would have to say how morphisms
can be added. For instance in Ab, given two parallel morphisms f , f ′ : A → B,
we can add them pointwise (f + f ′)(a) = f (a) + f ′(a).383 This operation makes 383 The group operation in B is denoted by + be-

cause it is commutative.HomAb(A, B) an abelian group. Moreover, you can check that, just as multipli-
cation commutes with addition in a ring, g ◦ (f + f ′) = (g ◦ f) + (g ◦ f ′) and
(f + f ′) ◦ h = (f ◦ h) + (f ′ ◦ h).384 This is equivalent to saying 384 However, in general,

(g + g′) ◦ (f + f ′) ̸= (g ◦ f) + (g′ ◦ f ′).◦A,B,C : HomAb(B, C)×HomAb(A, B)→ HomAb(A, C)

is a bilinear map, or equivalently,

◦A,B,C ∈ HomAb (HomAb(B, C)⊗HomAb(A, B), HomAb(A, C)) ,

where ⊗ denotes the tensor product of abelian groups. Noting that (Ab,⊗, Z)

is a monoidal category, we simply say that Ab is enriched in Ab. You can check
that Vectk is also Ab–enriched.385 385 You might encounter abelian categories in the

wild, these are a special kind of Ab–enriched
categories.3. The category Cat of small categories is monoidal with the tensor being × and the

unit being 1. A category enriched in Cat is a strict 2–category. For instance, the
2–category of categories is a collection Cat0 of objects, a category Cat(C, D) =

[C, D] for every C, D ∈ Cat0, a functor idC : 1 ⇝ [C, C] that picks the identity
functor and, as you will show in Exercise 372, a morphism

◦C,D,E ∈ HomCat([D, E]× [C, D], [C, E]).

The diagrams corresponding to (147), (148), and (149) (now they live in Cat)
commute by results we have shown in this chapter.

https://ncatlab.org/nlab/show/monoidal+category
https://en.wikipedia.org/wiki/Bilinear_map
https://en.wikipedia.org/wiki/Tensor_product
https://ncatlab.org/nlab/show/abelian+category

114 ralph sarkis

4. Generalizing the previous item, a strict n–category is a category enriched in the
category of strict (n− 1)–categories.

5. The posetal category ([0, ∞],≥) is monoidal with the tensor being + (addition)
and unit being 0.386 A category enriched in [0, ∞] is 386 We define addition with ∞ in the intuitive

way, x + ∞ = ∞ + x = ∞ for all x ∈ [0, ∞].

• a collection of objects X,

• for every x, y ∈ X an element X(x, y) ∈ [0, ∞], and

• for every x, y, z ∈ X, an element of Hom[0,∞](X(y, z) + X(x, y), X(x, z)).

We can see the second point as a function X × X → [0, ∞], and the third point
says that X(x, z) ≤ X(x, y) + X(y, z).387 This looks like a triangle inequality, and 387 Recall there is an element in Hom[0,∞](r, s) if

and only if r ≥ s.in fact all of X looks like a metric space, but where the distance can be infinite,
the distance is not symmetric, and two distinct elements can be at distance 0.388 388 The fact that X(x, x) = 0 is witnessed by the

identity morphism in Hom[0,∞](0, X(x, x)).A [0, ∞]–enriched category is also called a Lawvere metric space. If you are enjoy-
ing this introduction to enriched category theory, you can try to define enriched
functors. You should find that for [0, ∞], an enriched functor is a nonexpansive
map between Lawvere metric spaces.389 389 This is one reason to define Met as we did.

SOL Exercise 372 (NOW!). Show that there is a functor [D, E]× [C, D] ⇝ [C, E] whose
action on objects is (F, G) 7→ F ◦ G.

5.3 Equivalences

Up to now, we supposedly have been doing everything up to isomorphism. How-
ever, in a 2–category and in particular in Cat, this can be too restrictive. Fortunately,
the new “dimension” of natural transformations allows us to define a relaxed ver-
sion of equality between categories called equivalence.

Recall that an isomorphism of categories is an isomorphism in the category Cat,
namely, a functor F : C ⇝ D with an inverse G : D ⇝ C such that F ◦ G = idD

and G ◦ F = idC. As is typical in mathematics, one cannot distinguish between
isomorphic categories as they only differ in notations and terminology.390 390 For example, the monoid isomorphism N ∼=

{a}∗ offers two ways to talk about the same
mathematical object. In particular, it identifies
1 with a, 2 with aa, 3 with aaa, etc.

In many situations, we will describe an isomorphism between C and D by identi-
fying the objects and morphisms in C with the objects and morphisms in D. That is,
the functors are implicit in the discussion. For instance, in Example 330 we argued
that 1/Set and Set∗ are the same category. We really meant that they are isomor-
phic.391 Only in rare cases (see Example 373.5 below) will we explicitly define the 391 The details of the construction of the isomor-

phisms are left to you.functor and its inverse.

Examples 373. Here are other examples of isomorphic categories that we have al-
ready seen and a couple of new ones.

Another example for readers who know a bit of
advanced algebra. Let k be a field and G a fi-
nite group, the categories of k[G]–modules (k[G]
is the group ring of k over G) and of k–linear
representations of G are isomorphic.

1. It was already shown in Example 350 (the details were implicit) that for a group
G, the category [BG, Set] is isomorphic to the category of G–sets with G–equivariant
maps as morphisms.

https://ncatlab.org/nlab/show/metric+space#LawvereMetricSpace
https://en.wikipedia.org/wiki/Module_(mathematics)
https://en.wikipedia.org/wiki/Group_ring
https://en.wikipedia.org/wiki/Group_representation

my first category theory textbook 115

2. In Example 351, three other isomorphisms were implicitly given:

[1, C] ∼= C [1 + 1, C] ∼= C× C [2, C] ∼= C→.

3. The category Rel of sets with relations is isomorphic to Relop.392 The functor 392 An arbitrary category C is not always isomor-
phic to its opposite. While the opposite functors
(−)op

C : C ⇝ Cop and (−)op
Cop : Cop ⇝ C are in-

verses of each other, they are contravariant func-
tors, i.e. they are not morphisms in Cat.

Rel ⇝ Relop is the identity on objects and sends a relation R ⊆ X × Y to the
opposite relation R⊆ Y × X (which is a morphism X → Y in Relop) defined by
(y, x) ∈ R⇔ (x, y) ∈ R. The inverse is defined similarly.

4. Let C and D be categories the functor swap : C ×D ⇝ D × C sends (A, B) to
(B, A) and (f , g) to (g, f). It is easy to check that swap is a functor with inverse
swap−1 : D× C⇝ C×D defined in the obvious way.

5. Given three categories C, D and E, there is an isomorphism393 393 You might recognize a similarity with ex-
ponentials which rely on an isomorphism
HomC(B × X, A) ∼= HomC(B, AX). The exam-
ple here is more than an instance of exponen-
tials of categories because the isomorphism is
not only as sets but as categories.

[C×D, E] ∼= [C, [D, E]].

The construction of the isomorphism follows the intuition of currying and un-
currying of functions, so the definitions are straightforward. Still, you will see
that verifying the straightforward defintions are well-typed is cumbersome (but
simple) because there are several levels of functors and natural transformations.

Let F : C×D ⇝ E, the currying of F is ΛF : C ⇝ [D, E] defined as follows. For
X ∈ C0, the functor ΛF(X) sends Y ∈ D0 to F(X, Y) and g ∈ D1 to F(idX , g). We
showed in Exercise 136 that ΛF(X) = F(X,−) is a functor. For f ∈ HomC(X, X′),
we define the natural transformation ΛF(f) : F(X,−)⇒ F(X′,−) by

ΛF(f)Y = F(f , idY) : F(X, Y)→ F(X′, Y).

The naturality square (150) is commutative because, by functoriality of F, the
top and bottom path are equal to F(f , g). We also have to show ΛF is a functor,
namely ΛF(idX) = 1F(X,−) and ΛF(f ◦ f ′) = ΛF(f) · ΛF(f ′). We can verify this
componentwise using functoriality of F.

F(X, Y) F(X, Y′)

F(X′, Y) F(X′, Y′)

F(f ,idY)

F(idX ,g)

F(f ,idY′)

F(idX′ ,g)

(150)

ΛF(idX)Y = F(idX , idY) = idF(X,Y)

ΛF(f ◦ f ′)Y = F(f ◦ f ′, idY) = F(f , idY) ◦ F(f ′, idY) = ΛF(f)Y ◦ ΛF(f ′)Y.

It remains to define Λ− on morphisms. Given a natural transformation ϕ : F ⇒
F′, we define Λϕ : ΛF ⇒ ΛF′ at component X ∈ C0 by the natural transformation:

Λϕ(X) = ϕX,− : F(X,−)⇒ F′(X,−).

We showed in Exercise 344 that ϕX,− is natural. Finally, we can check that Λ− is
a functor with the following derivations.394 394 The second equation on the second line can

be verified componentwise, i.e. for every Y ∈
D0

(ϕ · η)X,Y = ϕX,Y ◦ ηX,Y = (ϕX,− · ηX,−)Y .
Λ1F(X) = (1F)X,− = 1F(X,−)

Λ(ϕ · η)(X) = (ϕ · η)X,− = ϕX,− · ηX,− = Λϕ · Λη

116 ralph sarkis

Conversely, let F : C⇝ [D, E], the uncurrying of F is Λ−1F : C×D⇝ E defined
as follows. We use Exercise 137 to define Λ−1F componentwise. Fixing X ∈ C0,
we know that F(X) is a functor, so we set Λ−1F(X,−) = F(X). Fixing Y ∈ D0,
we define Λ−1F(−, Y) on objects by sending X ∈ C0 to F(X)(Y) and f ∈ C1

to F(f)Y.395 To show Λ−1F(−, Y) is a functor, we use the functoriality of F as 395 As a sanity check, if f : X → X′, F(f) :
F(X) ⇒ F(X′), thus the component at Y is
F(f)Y : F(X)(Y)→ F(X′)(Y) as desired.

follows.

Λ−1F(idX , Y) = F(idX)Y = 1F(X)Y
= idF(X)(Y)

Λ−1F(f ◦ f ′, Y) = F(f ◦ f ′)Y = (F(f) · F(f ′))Y = F(f)Y ◦ F(f ′)Y.

Now, for every f : X → X′ and g : Y → Y′, the naturality of F(f) implies the
square in (151) commutes. This means we can let Λ−1F(f , g) be the diagonal, i.e.

Λ−1F(f , g) := Λ−1F(X′, g) ◦ Λ−1F(f , Y) = Λ−1F(f , Y′) ◦ Λ−1F(X, g),

and conclude by Exercise 137 that Λ−1F : C×D⇝ E is a functor.

F(X)(Y) F(X)(Y′)

F(X′)(Y) F(X′)(Y′)

F(X)(g)

F(f)Y F(f)Y′

F(X′)(g)

(151)

Given a natural transformation ϕ : F ⇒ F′, we define Λ−1ϕ : Λ−1F ⇒ Λ−1F′

by (Λ−1ϕ)X,Y := (ϕX)Y. By Exercise 344, it is enough to show naturality in one
component at a time. Fix X ∈ C0, by hypothesis (ϕX is a morphism in [D, E]),
ϕX : F(X) ⇒ F′(X) is natural in Y. Fix Y ∈ D0, we need to show the following
square commutes.

F(X)(Y) F(X′)(Y)

F′(X)(Y) F′(X′)(Y)

(ϕX′)Y

Λ−1F′(f ,Y)

Λ−1F(f ,Y)

(ϕX)Y (152)

Recalling that Λ−1F(f , Y) = F(f)Y and Λ−1F′(f , Y) = F′(f)Y, we recognize this
square as NAT(ϕ, X, X′, f) evaluated at Y. Finally, we can check that Λ−1− is a
functor with the following derivations.

(Λ−11F)X,Y = ((1F)X)Y = idF(X)(Y) = (1Λ−1F)X,Y

(Λ−1ϕ · η)X,Y = ((ϕ · η)X)Y = (ϕX)Y ◦ (ηX)Y = (Λ−1ϕ)X,Y · (Λ−1η)X,Y

The last step (I promise) of this proof is to show that Λ− and Λ−1− are inverses
of each other. The mindless computations below suffice.

ΛΛ−1F(X)(Y) = Λ−1F(X, Y) = F(X)(Y)

ΛΛ−1F(f)Y = Λ−1F(f , Y) = F(f)Y

Λ−1ΛF(X, Y) = ΛF(X)(Y) = F(X, Y)

Λ−1ΛF(f , g) = ΛF(X′)(g) ◦ ΛF(f)Y = F(idX′ , g) ◦ F(f , idY) = F(f , g)

Of course, the list above is not exhaustive, but it is time to introduce equivalences.
Instead of requiring the round trips between C and D to be the identities, we merely
require they are naturaly isomorphic to the identities.

my first category theory textbook 117

Definition 374 (Equivalence). A functor F : C⇝ D is an equivalence of categories
if there exists a functor G : D ⇝ C such that F ◦ G ∼= idD and G ◦ F ∼= idC.396 This 396 Recall that ∼= between functors stands for nat-

ural isomorphisms.is clearly symmetric, so we say two categories C and D are equivalent, denoted
C ≃ D, if there is an equivalence between them. Moreover, we say that G is a
quasi-inverse of F and vice-versa.

This is certainly weaker than an isomorphism of categories, but it is still quite
strong. In order to gain more intuition on how equivalences equate two categories,
let us observe what properties this forces on the functor F. For all f ∈ HomC(A, B),
the following square commutes where ϕA and ϕB are isomorphisms.397 397 Naturality of ϕ only gives us GF(f) ◦ ϕA =

ϕB ◦ f , but by composing with ϕ−1
A or ϕ−1

B , we
obtain the commutativity of all of (153). In par-
ticular, we have GF(f) = ϕB ◦ f ◦ ϕ−1

A .A B

GF(A) GF(B)

ϕA

GF(f)

f

ϕB ϕ−1
Bϕ−1

A (153)

This implies that the map f 7→ GF(f) : HomC(A, B) → HomC(GF(A), GF(B)) is
a bijection. Indeed, pre-composition by ϕ−1

A and post-composition by ϕB are both
bijections,398 so 398 Recall the definitions of monomorphisms and

epimorphisms and the fact that isomorphisms
are monic and epic.

f 7→ ϕB ◦ f ◦ ϕ(A)−1 = GF(f)

is a bijection. Since A and B are arbitrary, we conclude G ◦ F is a fully faithful
functor and a symmetric argument shows F ◦ G is also fully faithful. Then, it is
easy to conclude that F and G must be fully faithful as well.399 399 Recall Exercise 124

What is more, the existence of an isomorphism ηA : A → FG(A) for any object
A implies F (symmetrically G) has the following property.

Definition 375 (Essentially surjective). A functor F : C ⇝ D is essentially surjec-
tive if for any X ∈ D0, there exists Y ∈ C0 such that X ∼= F(Y).400 400 Intuitively, this property means that while the

image of F may not be all of D, everything out-
side the image is at least isomorphic to somethig
in the image.

We will show that these two properties (full faithfulness and essential surjectiv-
ity) are necessary and sufficient for F to be an equivalence.

Theorem 376. A functor F : C⇝ D is an equivalence of categories if and only if F is fully
faithful and essentially surjective.

Proof. (⇒) Shown above.
(⇐) We construct a functor G : D⇝ C such that G ◦ F ∼= idC and F ◦G ∼= idD.401 401 The quasi-inverse of F. We can say the thanks

to Exercise 377.Since F is essentially surjective, for any A ∈ D0, there exists an object G(A) ∈ C0

and an isomorphism ϕA : F(G(A)) ∼= A. Hence, A 7→ G(A) is a good candidate to
describe the action of G on objects.

Next, similarly to the converse direction, note that for any A, B ∈ D0, the map

f 7→ ϕB ◦ f ◦ ϕ−1
A

is a bijection from HomD(A, B) to HomD(FG(A), FG(B)). Moreover, since the func-
tor F is fully faithful, it induces a bijection

FGA,GB : HomC(G(A), G(B))→ HomD(FG(A), FG(B))

118 ralph sarkis

which in turns yields a bijection

GA,B : HomD(A, B)→ HomC(G(A), G(B)) = f 7→ F−1
GA,GB(ϕB ◦ f ◦ ϕ−1

A).

This is the action of G on morphisms. Observe that the construction of G ensures
that F ◦ G ∼= idD through the natural transformation ϕ. It remains to show that G
is indeed a functor and find a natural isomorphism η : G ◦ F ∼= idC.

For any composable morphisms (f , g) ∈ D2, it is easy to verify that

F(G(f) ◦ G(g)) = FG(f) ◦ FG(g) = FG(f ◦ g),

so functoriality of G because F is faithful. To find η, recall that the definition of G
yields commutativity of (154) for any f ∈ HomC(A, B).

F(A) F(B)

FGF(A) FGF(B)

F(f)

ϕFA

FGF(f)

ϕFB (154)

Then, because F is fully faithful, (??) also commutes in C where ηX = F−1
X,GFX(ϕFX),

and we conclude that η is a natural isomorphism idC ∼= G ◦ F.402 402 You can manually derive that ηX is an isomor-
phism or use the fact that fully faithful functors
reflect isomorphisms (Exercise 188).

A B

GF(A) GF(B)

f

ηA

GF(f)

ηB (155)

When constructing the quasi-inverse of F in
Theorem 376, we had to pick one G(A) for every
A such that A ∼= FG(A) and one isomorphism
ϕA : A ∼= FG(A). These choices rely on the
axiom of choice. There is some literature on do-
ing category theory constructively and it relies
on anafunctors. Those were defined precisely to
avoid the axiom of choice in the proof above.

The insight to extract from this argument is that two categories are equivalent
if they describe the same objects and morphisms with the only relaxation that iso-
morphic objects can appear any number of times in either category. In contrast,
categories can only be isomorphic if they have exactly the same objects and mor-
phisms.

SOL Exercise 377 (NOW!). Let F : C ⇝ D and G, G′ : D ⇝ C be two quasi-inverses to
F. Show that G ∼= G′.

SOL Exercise 378. Let F : C ⇝ D be an equivalence. Show that if F ∼= F′, then F′ is an
equivalence.

We will detail a couple of easy examples of equivalences and briefly mention a
few harder ones. Of course, all the isomorphisms of categories we saw earlier are
examples of equivalences where the natural isomorphisms are identities.

Examples 379 (Easy). 1. Consider the full subcategory of FinSet consisting only of
the sets ∅, {1}, {1, 2}, . . . , {1, . . . , n}, . . . , we denoted it by FinOrd. The inclusion
functor is fully faithful by definition and we claim it is essentially surjective.
Indeed, any set X ∈ FinSet0 has a finite cardinality n, so X ∼= {1, . . . , n} and the
latter belongs to FinOrd.

https://ncatlab.org/nlab/show/anafunctor

my first category theory textbook 119

2. In a very similar fashion, an early result in linear algebra says that any finite
dimensional vector space over a field k is isomorphic to kn for some n ∈ N.
Thus, the category whose objects are kn for all n ∈ N and morphisms are m×
n matrices with entries in k,403 which we denote Mat(k), is equivalent to the 403 After making a choice of basis for all kn, an

m× n matrix with entries in k corresponds to a
linear map kn → km.

category of finite dimensional vector spaces.

3. A partial function f : X ⇀ Y is a function that may not be defined on all of X.404
404 In this context, a normal function defined on
all of X is called total.There is category Par of sets and partial functions where identity morphism and

composition are defined straightforwardly.405 We can view a partial function f : 405 You can view Par as the subcategory of Rel
where you only take the relations R ⊆ X × Y
satisfying for any x ∈ X (cf. Remark 116),

| {y ∈ Y | (x, y) ∈ R} | ≤ 1.

X ⇀ Y as a total function f ′ : X → Y + 1 which sneds x to f (x) when the latter is
defined and to ∗ ∈ 1 otherwise. Further extending f ′ to [f ′, id1] : X + 1→ Y + 1,
we can see any partial function as a function between pointed sets where the
distinguished element corresponds to being undefined.

This yields a fully faithful functor F : Par ⇝ Set∗ sending X to (X + 1, ∗) and
f : X ⇀ Y to [f ′, id1].406 This functor is essentially surjective because for every 406 We have already seen in Corollary 268 that

[f ′, id1] = [g′, id1] if and only if f ′ = g′. It
should be clear from the definition that f ′ = g′

if and only if f = g.

pointed set (X, x), we find an isomorphism (X \ {x}+ 1, ∗) → (X, x) that sends
y ∈ X \ {x} to y and ∗ to x. We infer the quasi-inverse to F sends a pointed
set (X, x) to X \ {x} and a function f : (X, x) → (Y, y) to the partial function
X \ {x} → Y \ {y} that acts like f but is undefined whenever f (a) = y.

The first two examples and many other simple examples of equivalences are
examples of skeletons. They are morally a subcategory where all the isomorphic
copies are removed.

Definition 380 (Skeleton). A category is called skeletal if there it contains no two
isomorphic objects. A skeleton of a category is an equivalent skeletal category.

Examples 381. We have said that FinOrd ≃ FinSet and Mat(k) ≃ FDVectk and
we leave to you the easy task to check that these are examples of skeletons.407 407 Namely, you should show that no two sets

in FinOrd are isomorphic and no two spaces in
Mat(k) are isomorphic.

Any posetal category is skeletal because whenever x ≤ y and y ≤ x, we have
x = y which means no two distinct object can be isomorphic.

A category always has a skeleton if you assume the axiom of choice and the next
result justifies us calling it the skeleton of a category.

SOL Exercise 382. Show that all skeletons of a category are isomorphic.

Here are other more interesting examples of equivalent categories.

Example 383 (Medium). Let C be a category, the functor id : C ⇝ C→ sends X
to idX and f : X → Y to the commutative square in (156). This functor is an
equivalence if and only if all morphisms in C are isomorphisms.408 It is clearly 408 Such a category is called a groupoid.

fully faithful, so it is left to show id is essentially surjective if and only if C is a
groupoid.

X X

Y Y

idX

f

idY

f (156)
(⇒) For any f : X → Y ∈ C1, by hypothesis, there exists A ∈ C0 such that

idA ∼= f in C→. Let (s : A→ X, t : A→ Y) be the isomorphism, its inverse must be
(s−1, t−1). Looking at the chain of commutative squares in (157), we can infer that
s ◦ t−1 is the inverse of f .409 409 The composition f ◦ s ◦ t−1 is the top path of

the combined two leftmost squares, the bottom
path is t ◦ t−1 ◦ idY = idY . The composition s ◦
t−1 ◦ f is the bottom path of the combined two
rightmost squares, the top path is idX ◦ s ◦ s−1 =
idX .

120 ralph sarkis

Y A X A X

Y A Y A X

s

idA

t

f

s−1

t−1

idA

s

s

idX

t−1

idY

t−1

(157)

(⇐) Let f : X → Y be an object of C→, the inverse of f satisfies f ◦ f−1 = idY and
f−1 ◦ f = idX , so the squares in (158) are isomorphisms in C→ (they are inverses of
each other). Thus, we find that f is isomorphic to idX which is in the image of id.

X X X Y

X Y X X

idX

idX

f

f

idX

f

f−1

idX

(158)
SOL Exercise 384. The category Setoid is the full subcategory of 2Rel containing only

(X, R) where R is an equivalence relation. Is Set equivalent to Setoid?

Examples 385 (Hard). Examples of significant equivalences are all over the place in
higher mathematics. However, they require a bit of work to describe them, thus let
us only say a few words on a couple of them.

1. The equivalence between the category of affine schemes and the opposite of the
category of commutative rings is a seminal result in scheme theory, a huge part
of modern algebraic geometry.

2. The equivalence between Boolean lattices and Stone spaces is again seminal in
the theory of Stone-type dualities. These can lead to deep connections between
topology and logic. One application in particular is the study of the behavior of
computer programs through formal semantics.

SOL Exercise 386. Show that equivalence of categories is an equivalence relation.

SOL Exercise 387. Show that C ≃ C′ and D ≃ D′ implies [C, D] ≃ [C′, D′].

6 Yoneda Lemma
6.1 Representable Functors 121

6.2 Yoneda Lemma 126

6.3 Universality as Representability 130

We first defined an element of an object X ∈ C0 to be a morphism 1 → X.
Our inspiration came from Set where HomSet(1, X) ∼= X. This is not a perfect
categorification of the notion of element, because it works in some categories (e.g.
Poset, Top, Met), but not in others (e.g. Grp, Cat410, categories with no terminal 410 In Cat, a morphism 1 → C corresponds to

an object of C0, but depending on the context, it
may be more relevant to define an element of C
to be a morphism of C1.

object). In Exercise 331, we found a workaround for Grp, namely, elements of G
correspond to morphisms Z→ G.

Armed with our new abstract tools from last chapter, in particular natural iso-
morphisms, we can rigorously explain why 1 seems to represent the choice of an
element in Set, why Z plays that role in Grp, and go further to find other things
that are representable.

This journey quickly leads to the Yoneda lemma which formalizes our convic-
tion411 that studying mathematical objects through their interactions with other 411 Hopefully, you have been convinced by ear-

lier chapters.objects is “enough”.

6.1 Representable Functors

Throughout this chapter, let C be a locally small category. Recall that for an object
A ∈ C0, there are two Hom functors from C to Set. The covariant one, HomC(A,−),
sends an object B ∈ C0 to HomC(A, B) and a morphism f : B → B′ to f ◦ (−). The
contravariant one, HomC(−, A), sends an object B ∈ C0 to HomC(B, A) and a
morphism f : B → B′ to (−) ◦ f . In order to lighten the notation, we denote these
functors HA : C⇝ Set and HA : Cop ⇝ Set respectively.412 412 It is somewhat standard to use sub- and su-

perscript as an indication for the variance of a no-
tation. Note however that, while HA is covariant
and HA contravariant, we are not talking about
this. Instead we are interested in their variance in
the parameter A, and we will, given a morphism
f : A → A′, construct a natural transformation
HA′ ⇒ HA which means HA is contravariant in
A, and similarly, HA is covariant in A.

Although these functors are sometimes interesting on their own, their full power
is unleashed when they are related to other functors through natural transforma-
tions. Before doing that, let us investigate how nice Hom functors are. For instance,
many Hom functors can be described in simpler terms.

Examples 388. We are just revisiting things we already know.

1. Let 1 = {∗} be the terminal object in Set, then what is the action of H1? For any
object B,

H1(B) = HomSet(1, B)

is easy to describe because for any element b ∈ B, there is a unique function
f : 1 → B = ∗ 7→ b. Hence, there is an isomorphism from H1(B) to B for any
B ∈ Set0, it sends f to f (∗) and its inverse sends b ∈ B to the map ∗ 7→ b.

122 ralph sarkis

Moreover, these isomorphisms are natural in B because (159) clearly commutes
for any f : B→ B′, yielding a natural isomorphism H1 ∼= idSet.

H1(B) H1(B′)

B B′

f ◦(−)

f

(159)

2. Consider again the terminal object but in the category Grp, namely, the group
1 only containing an identity element. Then, for any group G, the set H1(G)

is a singleton because any homomorphism f : 1 → G must send the identity
to the identity and no other choice can be made. Therefore, unlike in Set, H1

is very uninteresting and acts like the constant functor ∆(1) : Grp ⇝ Set, i.e.
H1 ∼= ∆(1).

3. A better choice of object to mimic the behavior of idGrp is the additive group Z.
Indeed, for any g ∈ G, there is a unique homomorphism f : Z → G sending 1
to g.413 A very similar argument as above yields a natural isomorphism HZ ∼= 413 Note that f is completely determined by f (1)

because the homomorphism properties imply

that f (n) = f (1)+
n· · · + f (1), f (−n) = f (n)−1,

and f (0) must be the identity.

idGrp.

4. The terminal object in Cat is the category 1 with a single object • and no mor-
phism other than the identity. For any category C ∈ Cat0, a functor 1 ⇝ C is
just a choice of object. Therefore, the same argument will show that H1 ∼= (−)0,
where (−)0 sends a category to its set414 of objects and a functor to its action 414 Recall that Cat only contains small categories.

restricted on objects.

In order to obtain a similar way to extract morphisms, consider the category 2
with two objects and a single morphism between them. One obtains a natural
isomorphism H2 ∼= (−)1.415 415 You can prove this as we did for H1 ∼= (−)0

or use Example 351.3.
Just like we benefitted from recognizing a category was isomorphic to a functor

category (e.g. Theorem 353 and Corollary 354), we can benefit from finding a nat-
ural isomorphism between a functor and a Hom functor. For instance, we already
know that the Hom functors are continuous,416 and with Example 388.4 we can 416 Theorem 282 and Corollary 283. Also recall

that a functor naturally isomorphic to a continu-
ous functor is also continuous, see Exercise 349.

infer (
∏
i∈I

Ci

)
0

= ∏
i∈I

(Ci)0 and

(
∏
i∈I

Ci

)
1

= ∏
i∈I

(Ci)1.

In words, the objects of a product of categories are tuples of objects of each cate-
gory and similarly for morphisms.417 This suggest carefully studying representable 417 We already knew that for the case of binary

products, see Exercise 207.functors.

Definition 389 (Representable functor). A covariant functor F : C ⇝ Set is rep-
resentable if there is an object X ∈ C0 such that F is naturally isomorphic to
HomC(X,−). If F is contravariant, then it is representable if it is naturally iso-
morphic to HomC(−, X).

Examples 390. Let us give examples of the contravariant kind.

1. Recall from Example 139.2 the contravariant powerset functor 2− : Set⇝ Set. It
sends a set X to its powerset 2X = P(X) and a function f : X → Y to the inverse
image 2 f = f−1 : P(Y) → P(X). We can identify subsets of a given set with
functions from this set into Ω = {⊥,⊤}.418 This yields a bijection 2X ∼= HΩ(X) 418 See our discussion of subobject classifers in

Set.that is natural in X. Indeed, for all f : X → Y, you can check (160) commutes,419

419 Starting with p : Y → Ω in the bottom left.
The top path yields

(p ◦ f)−1(⊤) = {x ∈ X | p(f (x)) = ⊤}.

The bottom path yields

f−1(p−1(⊤)) = {x ∈ X | p(f (x)) = ⊤}.

my first category theory textbook 123

so 2− ∼= HΩ.

HΩ(X) 2X

HΩ(Y) 2X

p 7→p−1(⊤)

p 7→p−1(⊤)
−◦ f 2 f = f−1

S 7→χS

S 7→χS

(160)

2. Our first example of natural isomorphism (Example 345.1) was the currying of
a morphism λ : HomC(−× X, A) ∼= HomC(−, AX), where AX is an exponential
object. It turns out exponential objects can be defined via this natural isomor-
phism. Namely, there is an isomorphism ℓ : HomC(− × X, A) ∼= HomC(−, E)
if and only if E is the exponential object and ℓ−1

E (idE) is the evaluation mor-
phism.420 420 The expression ℓ−1

E (idE) might look like it
comes out of nowhere, but it is not so myste-
rious. Given the natural isomorphism ℓ, if we
are looking for a moprhism of type E× X → A,
then we may as well look for a morphism of
type E → E and use the bijection ℓ−1

E . What
morphism of type E → E do we have? Only
one is guaranteed to exist, the identity idE. This
chapter contains several instances of this kind of
forced choice.

(⇐) This was already shown in Example 345.1 modulo the fact that λ−1idAX =

ev. For the latter, it suffices to note that λev must be idAX to make (161) commute.

A AX × X

AX × X

ev

λev×idXev
(161)

A E× X

B× X

ℓ−1
E (idE)

ℓB(g)×idXg
(162)

(⇒) Given ℓ, we show E is the exponential. For any g : B× X → A, we claim
that ℓB(g) makes (162) commute. The naturality of ℓ−1 yields the following
commutative square.

HomC(B× X, A) HomC(B, E)

HomC(E× X, A) HomC(E, E)

−◦ℓB(g)−◦(ℓB(g)×idX)

ℓ−1
E

ℓ−1
B

(163)

Starting in the bottom right with idE, the bottom path sends it to ℓ−1
E (idE) ◦

(ℓB(g)× idX) and the top path sends to ℓ−1
B (ℓB(g)) = g. Commutativity lets us

conclude ℓ−1
E (idE) ◦ (ℓB(g)× idX) = g, i.e. (162) commutes.

In the first items of Examples 388 and 390, we made an arbitrary choice of set.
That is, we could have taken any singleton instead of 1 in the first case and any set
with two elements instead of Ω in the second. More generally, one can show that if
A ∼= B, then HA ∼= HB and HA ∼= HB.

SOL Exercise 391 (NOW!). Let A, B ∈ C0 be isomorphic objects. Show that HA ∼= HB.
Dually, show that HA ∼= HB.

In particular, for any object E isomorphic to the exponential AX , we have

HE ∼= HAX ∼= HomC(−× X, A),

which means E is also the exponential. In Exercise 300, we also showed that if E
satisfies the same universal property as AX , then they must be isomorphic. In order

124 ralph sarkis

to prove this using the natural isomorphism instead of the universal property, we
would need a converse to Exercise 391.

Perhaps surprisingly, it is true and it will follow from the Yoneda lemma, but we
prove it on its own first as a warm-up for the proof of the lemma.

Proposition 392. Let A, B ∈ C0 be such that HA ∼= HB, then A ∼= B.

Proof. The natural isomorphism gives two natural transformations ϕ : HA ⇒ HB

and η : HB ⇒ HA such that for any object X ∈ C0,

ηX ◦ ϕX : HA(X)→ HA(X) and ϕX ◦ ηX : HB(X)→ HB(X)

are identities. In order to show A ∼= B, we will find two morphisms f : B→ A and
g : A → B such that f ◦ g = idA and g ◦ f = idB. With the given data, there is no
freedom to construct f and g. Since C, A and B are arbitrary, there are only two
morphisms that are required to exist, idA and idB. Next, we note that idA ∈ HA(A)

and idB ∈ HB(B), hence, we can set f := ϕA(idA) and g := ηB(idB).421 421 To emphasize the point about no freedom, try
to convince yourself that any morphisms of type
B → A and A → B that we can construct from
idA, idB, ϕ and η (the only data we have) must
be equal to f and g as we defined them.

Now, ϕA(idA) is a morphism from B to A, so (164) commutes by naturality of η.

HB(A) HA(A)

HB(B) HA(B)

ηA

ηB

ϕA(idA)◦(−) ϕA(idA)◦(−) (164)

We conclude, by starting with idB in the bottom left, that

g ◦ f = ϕA(idA) ◦ ηB(idB) = ηA(ϕA(idA)) = idA.

A dual argument shows that

f ◦ g = ηB(idB) ◦ ϕA(idA) = ϕB(ηB(idB)) = idB,

and we have shown A ∼= B.

Corollary 393 (Dual). Let A, B ∈ C0 be such that HA ∼= HB, then A ∼= B.

Steve Awodey calls Yoneda principle the equivalences422
422 They are the combination of Exercise 391,
Proposition 392 and Corollary 393.

HA ∼= HB ⇔ A ∼= B⇔ HA ∼= HB.

This is the formalization of the philosophical point we mentionned a few times
already: an object is determined up to isomorphism by all its relations with all
other objects. The Hom functor HA (or HA) makes for an efficient description of all
the relations between A and all other objects.

Let us give two more concrete examples of representable functors.

Example 394 (G acting on itself). Any group G acts on itself by multiplication on
the left. The corresponding functor, abusively denoted by G : BG ⇝ Set, sends
∗ to the set G and g ∈ G to the bijection h 7→ gh.423 Fix another group action 423 Its inverse is h 7→ g−1h.

my first category theory textbook 125

F ∈ [BG, Set], we showed a natural transformation f : G ⇒ F is a G–equivariant
map, it makes (165) commute for every g ∈ G.

G F(∗)

G F(∗)

g− g⋆−

f∗

f∗

(165)
Starting with 1G on the top left, we find that f∗(g) = g ⋆ f∗(1G). Thus, the

equivariant map f∗ is completely determined by where it sends 1G. Since there
is no constraint on that choice, we get a bijection between natural transformations
G ⇒ F and elements of F(∗).

The assignment F 7→ F(∗) is functorial as we have seen when defining Ev, and
you can also see it as the forgetful functor U : [BG, Set] ⇝ Set that forgets about
the action of G. Thus, we can ask whether the bijection above is natural in F, i.e.
does (166) commute for every h : F ⇒ F′? It does commute as both paths send f to
ϕ∗(f∗(1G)), hence we find that U is representable with U ∼= HG.

Hom[BG,Set](G, F) F(∗)

Hom[BG,Set](G, F′) F′(∗)

ϕ∗ϕ·−

f 7→ f∗(1G)

f 7→ f∗(1G)

(166)

Example 395 (Elements of a ring). In Ring just like in Grp, the terminal object is
the ring containing only one element that is the zero and identity at the same time.
Thus, there can be no morphism 1 → R unless R = 1.424 We leave you to show H1 424 A ring homomorphism must send 0 to 0 and

1 to 1, so if 0 = 1 in the source then 0 must equal
1 in the target as well.

is naturally isomorphic to the constant functor ∆(∅).
Let us try what we did for Grp: replace 1 with Z. Unfortunately, a ring homo-

moprhism f : Z → R is too constrained. We must have f (0) = 0R and f (1) = 1R,
and any other value is forced by the homomorphism properties:

f (n) = f (1)+
n· · · + f (1) = 1R+

n· · · +1R and f (−n) = − f (n).

This means Z is the initial ring, and we can prove HZ is naturally isomorphic to
the constant functor ∆(1) (see Exercise 405).

We need to add one element, say x, to Z so that f can map x anywhere, but no
other choice can be made.425 For the “map x anywhere” part, we must make sure 425 This is essentially what we have done to go

from 1 to Z in Grp. The integers can be seen as
the group 1 = {0} where we add 1 (it is not the
identity), its inverse −1 and letting the group
operation do its thing. For instance 2 = 1 + 1,
3 = 1 + 1 + 1, etc.

that x is free of any constraint other than the properties of a ring. That is, it has an
additive inverse −x, it satifies x + x = (1x + 1x) = (1 + 1)x = 2x and other similar
equations, it has powers like x2 = x · x and x3 = x · x · x, there are combinations
like 5 + 2x + 4x5, and so on. The “no other choice” part is a consequence of the
homomorphism properties. If the image of x is known, then the images of all the
multiples and powers of x and combinations of them and other elements of Z are
known too.

In short, we are talking about the ring Z[x] of polynomials with one variable and
coefficients in Z. A ring homomorphism Z[x] → R is completely determined by
where it sends x, and we leave you to show HZ[x] is naturally isomorphic to the
forgetful functor Ring⇝ Set.426 426 With the Yoneda principle, we now have the

promised categorical definition of polynomi-
als from Example 252.3. Exercise 396 general-
izes this to multivariate polynomials with non-
integer coefficients.

With a slight modification, we can show the units functor (−)× : Ring⇝ Set (we
also forget about the group structure) is representable. The ring Z[x, x−1] is Z[x]
where we add a multiplicative inverse to x. It satisfies all the expected equations
(e.g. x · x−1 = 1, x2 · x−3 = x−1, etc.) and no other. A ring homomoprhism
f : Z[x, x−1] → R must send x−1 to the inverse of f (x). Therefore, f (x) is now
restricted to R×. We leave you to show HZ[x,x−1] ∼= (−)×.

SOL Exercise 396. Let U : Ring ⇝ Set be the forgetful functor and, for any n ∈ N,
(−)n : Ring⇝ Ring the n–wise product functor.

126 ralph sarkis

1. Show that HZ[x1,...,xn] is naturally isomorphic to the composition U ◦ (−)n.

2. For any ring R, show that HR[x] ∼= HR ×U.427 427 For this to typecheck, the R.H.S. must be the
product inside [Ring, Set], i.e. (HR ×U)(S) =
Hom(R, S)× S.3. Make up a categorical definition of R[x1, . . . , xn] using this characterization. Does

item 1 make you more confident in your definition?

6.2 Yoneda Lemma

Taking a closer look at our solution to Exercise 391, we find the assignments A 7→
HA and A 7→ HA are functorial.

Definition 397 (Yoneda embeddings). The contravariant Yoneda embedding428
428 Yoneda embeddings and the Yoneda lemma
are named in honor of Nobuo Yoneda.H(−) : Cop ⇝ [C, Set] sends A ∈ C0 to the Hom functor HA and a morphism

f : A′ → A to the natural transformation H f : HA ⇒ HA′ defined by H f
B =

HomC(f , B) = (−) ◦ f for every B ∈ C0. The naturality of H f follows from asso-
ciativity429: for any g : B→ B′, (167) commutes. 429 Starting with h in the top left. The top path

sends it to g ◦ (h ◦ f) and the bottom path sends
it to (g ◦ h) ◦ f . Since composition is associative,
both paths are the same function.HA(B) HA′(B)

HA(B′) HA′(B′)

(−)◦ f

g◦(−) g◦(−)

(−)◦ f

(167)

The covariant embedding H(−) : C ⇝ [Cop, Set] sends B ∈ C0 to the Hom
functor HB and a morphism f : B → B′ to the natural transformation H f : HB ⇒
HB′ defined by (H f)A = HomC(A, f) = f ◦ (−) for any A ∈ C0.430 In order to 430 Naturality follows from associativity of com-

position again.harmonize the notation, we write HA
f instead of (H f)A. Now the subscript of H

always goes in the target of the Hom, and the superscript alawys goes in the source.
Another way to obtain these embeddings (incidentally proving they are functors)

is to curry the Hom bifunctor. Indeed, you can verify that

H− = ΛHom(−,−) and H− = Λ(Hom(−,−) ◦ swap).

The embeddings are called like that (c.f. Exercise 157) because both functors are
injective on objects431 and fully faithful as will follow from the Yoneda lemma. 431 If A ̸= B, then HA(A) contains idA but

HB(A) does not, so HA ̸= HB.We now understand how an object A ∈ C0 can be understood by studying the
representable HA. In some sense, HA tells us how A views the category it is in.
Since the representable HA is an object of the category [C, Set], it is daring to try
and understand it via the representable HHA

. In other words, how does HA see
other functors in [C, Set].

We have already got a problem. Even if C is locally small, there is no guaran-
tee that [C, Set] is locally small. Thus, HHA

= Hom[C,Set](HA,−) might no be a
well-defined functor.432 To avoid confusing or cluttered notation, we write instead 432 We do not know what category it lands in.

Nat(HA,−) because, for a functor F : C ⇝ Set, Nat(HA, F) is the collection of
natural transformations from HA to F.

We already saw that for every morphism f : B → A in C, there is an element
H f ∈ Nat(HA, HB). Does every natural transformation of this type arise like that?

https://en.wikipedia.org/wiki/Nobuo_Yoneda

my first category theory textbook 127

Given a natural transformation α : HA ⇒ HB constructed from an unknown mor-
phism B → A, we can figure out what is that morphism by looking at αA(idA).433 433 Once again, this choice is forced on us by the

data we have. We are only given α and we need
to find an element of Hom(B, A). It turns out
αA has type Hom(A, A) → Hom(B, A), so it re-
mains to find an element of Hom(A, A). Since
we know nothing else about C, we can only pick
idA, because Hom(A, A) might contain no other
morphism.

Indeed, if α = H f for some given f : B→ A, then

αA(idA) = H f
A(idA) = idA ◦ f = f .

Even if we do not know such an f , αA(idA) is still a morphism B→ A. It turns out
we can exploit naturality to show α must be the natural transformation HαA(idA).

What can we say when the target of α is not representable? i.e. α : HA ⇒ F for
some functor F : C ⇝ Set. Our trick from above tells us every such α yields an
element αA(idA) ∈ F(A). Again relying on naturality, we can show every element
a ∈ F(A) gives a transformation α : HA ⇒ F satisfying αA(idA) = a.

In short, the surprising relation described by the Yoneda lemma is an isomor-
phism between Nat(HA, F) and F(A) that is natural in F and A. We first show the
isomorphism and then the naturality.

Lemma 398 (Yoneda lemma I). For any A ∈ C0 and F : C⇝ Set,

Nat(HA, F) ∼= F(A).

Proof. Let ϕA,F : Nat(HA, F)→ F(A) be defined by α 7→ αA(idA).434 In the opposite 434 As we said earlier, this is the only way to ob-
tain an element of F(A) from the given data.direction, let ηA,F : F(A) → Nat(HA, F) send an element a ∈ F(A) to the natural

transformation with components (ηA,F(a))B : HomC(A, B) → F(B) = f 7→ F(f)(a)
for each B ∈ C0.435 Checking (168) commutes for any g : B→ B′ shows that ηA,F(a) 435 Again this definition is the only one that type-

checks. With a functor F, an element of F(A),
and a morphism in HomC(A, B), we can apply
F(f) : F(A)→ F(B) to get an element of F(B).

is a natural transformation. Starting with f in the top left, the top path sends it to
F(g)(F(f)(a)) and the bottom path sends it to F(g ◦ f)(a). These two are equal by
functoriality, i.e. F(g) ◦ F(f) = F(g ◦ f).

HA(B) F(B)

HA(B′) F(B′)

g◦(−)

F(−)(a)

F(g)

F(−)(a)

(168)

We now check that ϕA,F and ηA,F are inverses. First, (η ◦ ϕ)A,F sends α ∈
Nat(HA, F) to ηA,F(αA(idA)), and at any B ∈ C0, we have

(ηA,F(αA(idA)))B(f) = F(f)(αA(idA)) def of η

= αB(HA(f)(idA)) NAT(α, A, B, f)

= αB(f ◦ idA) def of HA

= αB(f),

thus α = (η ◦ ϕ)A,F(α).
Conversely, (ϕ ◦ η)A,F sends a ∈ F(A) to ηA,F(a)A(idA) = F(idA)(a) = a, and we

can conclude that ηA,F and ϕA,F are natural isomorphisms.

Corollary 399 (Dual). For any A ∈ C0 and F : Cop ⇝ Set, Nat(HA, F) ∼= F(A).

128 ralph sarkis

We already mentionned a consequence of this result.

Corollary 400. The Yoneda embeddings H(−) and H(−) are fully faithful.436 436 Recall from Exercises 187 and 188 that when
a functor F is fully faithful, A ∼= B if and only
if FA ∼= FB. Thus, Exercise 391, Proposition 392

and Corollary 393 are all corollaries of this.
Proof. Applying the lemma with F = HB, we find an isomorphism

Nat(HA, HB) ∼= HB(A) = HomC(B, A)

In the right to left direction, this isomorphism sends f : B → A to H f : HA ⇒
HB.437 This is the action of the functor H(−) on the homset HomC(B, A). Therefore, 437 By unrolling the definition of ηA,HB (f), we

find its component at A′ ∈ C0 sends h ∈
HomC(A, A′) to h ◦ f ∈ HomC(B, A′). So

ηA,HB (f) = H f .

for all A, B ∈ C0, f 7→ H f is a bijection, which means H(−) is fully faithful.
The dual argument shows H(−) is fully faithful.

Another consequence is that Nat(HA, F) is a set (because it is isomorphic to F(A)

which is a set), and this allows us to formally state the second part of the Yoneda
lemma.438 438 That ϕA,F and ηA,F are natural in A and F.

The assignment (A, F) 7→ Nat(HA, F) is a functor C× [C, Set] ⇝ Set with the
action on morphisms given by439 439 If g : A → A′, µ : F ⇒ F′, and η ∈

Nat(HA, F), we have the composite

HA′ Hg
=⇒ HA η

=⇒ F
µ

=⇒ F′ ∈ Nat(HA′ , F′).
(g, µ) : (A, F)→ (A′, F′) 7→ µ · (−) · Hg : Nat(HA, F)→ Nat(HA′ , F′).

We can check this preserves identities and composition. The identity morphism on
(A, F) is (idA, 1F), and it is sent to 1F · (−) · HidA , that is pre- and post-composition
by the identities.440 Given two morphisms (g, µ) : (A, F) → (A′, F′) and (g′, µ′) : 440 It follows from functoriality of H(−) that

HidA = 1HA .(A′, F′)→ (A′′, F′′), associativity of vertical composition implies

(µ′ · (−) · Hg′) ◦ (µ · (−) · Hg) = (µ′ · µ) · (−) · (Hg · Hg′) = (µ′ · µ) · (−) · Hg′◦g.

The type of Nat(H−,−) can be confusing. Just for a moment, think of Nat(−,−) as
a Hom bifunctor.441 Then, instead of seeing H− as a functor Cop ⇝ [C, Set], see it 441 Strictly speaking [C, Set] might not be lo-

cally small, so the functor Nat(−,−) is not well-
defined.

instead as C⇝ [C, Set]op. Then, Nat(H−,−) is the composite

C× [C, Set] [C, Set]op × [C, Set] SetH−×id Nat(−,−)
.

The assignment (A, F) 7→ F(A) is another functor of the same type. We denoted
it by Ev,442 its action on morphisms is defined by 442 See Example 373.5.

(g, µ) : (A, F)→ (A′, F′) 7→ F′(g) ◦ µA = µA′ ◦ F(g) : F(A)→ F′(A′).

Lemma 401 (Yoneda lemma II). There is a natural isomorphism Nat(H−,−) ∼= Ev.

Proof. The components of this isomorphism are the ones described in the first part.
It remains to show that ϕ is natural in (A, F).443 For any (g, µ) : (A, F) → (A′, F′), 443 By Exercise 344, it is enough to show it is nat-

ural in A and natural in F separately. We do
both at the same time because it is not much
harder.

we need to show the following square commutes.

Nat(HA, F) F(A)

Nat(HA′ , F′) F′(A′)

µ·(−)·Hg

ϕA,F

F′(g)◦µA

ϕA′ ,F′

(169)

my first category theory textbook 129

Starting with a natural transformation α ∈ Nat(HA, F), the bottom path sends it to
(µ · α ·Hg)A′(idA′) and the top path sends it to (F′(g) ◦µA)(αA(idA)). The following
derivation shows they are equal.

(µ · α · Hg)A′(idA′) = (µA′ ◦ αA′)(Hg
A′(idA′)) def of ·

= (µA′ ◦ αA′)(g) def of Hg
A′

= (µA′ ◦ αA′)(HA
g (idA)) def of HA

g

= (µA′ ◦ αA′ ◦ HA
g)(idA)

= (µA′ ◦ F(g) ◦ αA)(idA) NAT(α, A, A′, g)

= (F′(g) ◦ µA)(αA(idA)) NAT(µ, A, A′, g)

Corollary 402 (Dual). There is a natural isomorphism Nat(H−,−) ∼= Ev.444 444 We can typecheck this as before. We see H−
as a functor Cop ⇝ [Cop, Set]op (c.f. Exercise
146). Then Nat(H−,−) = Nat(−,−) ◦ H− × id.While the Yoneda lemma is called a lemma, it is extremely important and pow-

erful. We already said how it gives category theorists reasons to study an object
through its relations to other objects (via the Yoneda principle). In a shallow ex-
ploration of category theory, this might seem like the only point445 of the Yoneda 445 I find it already quite grandiose.

lemma.
Another result with a similar status in mathematics — it looks motivated only

by philosophical and meta considerations — is Cayley’s theorem. It states that any
group is isomorphic to the subgroup of a permutation group.446 Remarkably, the 446 It is important to group theorists because they

are interested in studying symmetries of geo-
metric shapes or other things, and these can eas-
ily be seen as subgroups of permutation groups.
Thus, the abstract notion of group is made more
concrete by Cayley’s theorem.

Yoneda lemma can be understood as a generalization of Cayley’s theorem. This is
our first application of Yoneda.

Example 403 (Cayley’s theorem with the Yoneda lemma). Recall the first part of the
Yoneda lemma which states that for a category C, a functor F : C ⇝ Set and an
object A ∈ C0, we have

Nat(Hom(A,−), F) ∼= F(A).

Moreover, we know the explicit maps, namely, a natural transformation ϕ in the
L.H.S. is mapped to ϕA(idA) and an element a ∈ F(A) is mapped to the natural
transformation whose component at B ∈ C0 is ϕB = f 7→ F(f)(a).

Let us apply this to C being the delooping of a group G. Recall that any functor
F : BG⇝ Set sends ∗ to a set S and any g ∈ G to a permutation of S, it corresponds
to an action of G on S.

To use the Yoneda lemma, our only choice of object for A is ∗ and we will choose
for F the Hom functor F = HomBG(∗,−). The Yoneda lemma yields

Nat(HomBG(∗,−), HomBG(∗,−)) ∼= HomBG(∗, ∗).

We already know that the R.H.S. is G,447 but we have to do a bit of work to under- 447 By definition of BG.

stand the L.H.S. First, observe that a natural transformation ϕ : HomBG(∗,−) ⇒
HomBG(∗,−) is just one morphism ϕ∗ : HomBG(∗, ∗) → HomBG(∗, ∗). Namely, it

is a map from G to G. Second, recalling that HomBG(∗, g) = g ◦ (−) and that ∗ is

130 ralph sarkis

the only object in C0, we get that ϕ∗ must only make (170) commute.

G G

G G

g◦(−)

ϕ∗

g◦(−)

ϕ∗

(170)

This is equivalent to ϕ∗(g · h) = g · ϕ∗(h), and we get that each ϕ∗ is a G–equivariant
map from G to itself.448 Denote the set of such maps by HomG(G, G). We obtain 448 We see G as a G–set with the action of left

multiplication as in Example 394.that, as sets,
HomG(G, G) ∼= G.

Now, we can check that HomG(G, G) is a subgroup of ΣG (the group of permuta-
tions of the set G) and that the bijection is in fact an group isomorphism. Cayley’s
theorem follows.

We have to show that idG is in HomG(G, G), that maps in HomG(G, G) are bi-
jective, and that they are stable under composition and taking inverses. First, we
have idG(g · h) = g · h = g · idG(h), so idG ∈ HomG(G, G). Second, let f be a G–
equivariant map. For any g ∈ G, we have f (g) = f (g · 1) = g · f (1), that is f acts
on G by right multiplication by f (1). Thus, it is bijective with its inverse being right
multiplication by f (1)−1. Third, if f and f ′ are both G–equivariant map, then

(f ◦ f ′)(g · h) = f (f ′(g · h)) = f (g · f ′(h)) = g · (f ◦ f ′)(h),

hence f ◦ f ′ is G–equivariant. Finally, we saw f−1 is right multiplication by f (1)−1,
and it is G–equivariant as f−1(g · h) = g · h · f (1)−1 = g · f−1(h). We conclude that
HomG(G, G) is a subgroup of ΣG.

The final check is that the Yoneda bijection G → HomG(G, G) sending g to (−) · g
is a group homomorphism.449 It is clear that it sends the identity to the identity 449 isomorphism follows because it is a bijection.

and for any g, h ∈ G

(−) · gh = ((−) · g) · h = ((−) · h) ◦ ((−) · g),

so this is a group homomorphism.

I would like to believe this book is not a “shallow exploration of category theory”,
so we will also see more concrete uses of Yoneda.

Example 404 (Exponentials in DGph). We saw in Chapter 4 that DGph is a topos,
so it has exponentials, but we did not write a nice description for them.450 We 450 Theoretically, we know how to compute them

because we have seen how to take power objects
in Example 310 and (co)limits in Example 359,
but we will take a more direct approach here.

will do this here relying on Yoneda and the isomorphism DGph ∼= [V ⇒ E, Set]
outlined in Example 359.

6.3 Universality as Representability

Representability is one of the two ways to describe universal constructions that we
hinted at at the end of Chapter 4. In this section, we will explore how any universal
property is equivalent to representability of some functor. Since (co)limits and

my first category theory textbook 131

universal morphisms are initial or terminal objects in some category, there is a first
trivial way to express universality as representability.

SOL Exercise 405 (NOW!). Let X ∈ C0 and ∆(1) : C ⇝ Set be the constant functor at
the singleton 1 = {⋆}. Show that HomC(X,−) ∼= ∆(1) if and only if X is initial.
Dually, HomC(−, X) ∼= ∆(1) if and only if X is terminal.451 451 In the dual statement, the source of ∆(1) is

Cop.

It turns out this result is not very useful.

Proposition 406. Let X, Y ∈ C0. The product of X and Y exists if and only if there exists
P ∈ C0 such that HomC×C(∆C(−), (X, Y)) ∼= HomC(−, P). The product is P.

Proof. (⇒) Let P = X×Y, for any A ∈ C0, there is an isomorphism

HomC×C((A, A), (X, Y)) ∼= HomC(A, X×Y)

which sends the pair (f : A→ X, g : A→ Y) to ⟨ f , g⟩ : A→ X× Y.452 In the other 452 Recall that ⟨ f , g⟩ is the unique morphism sat-
isfying πX ◦ ⟨ f , g⟩ = f and πY ◦ ⟨ f , g⟩ = g.
Be careful not to confuse it with a pair of mor-
phisms.

direction, p : A→ X×Y is sent to the pair (πX ◦ p, πY ◦ p). Let us show it is natural
in A. For any m : A′ → A, (171) commutes because the top path sends the pair
(f , g) to the morphism ⟨ f , g⟩ then to ⟨ f , g⟩ ◦m = ⟨ f ◦m, g ◦m⟩ and the bottom path
sends (f , g) to (f , g) ◦ (m, m) = (f ◦m, g ◦m) which is then sent to ⟨ f ◦m, g ◦m⟩.

HomC×C((A, A), (X, Y)) HomC(A, X×Y)

HomC×C((A′, A′), (X, Y)) HomC(A′, X×Y)

∼

−◦(m,m)

∼

−◦m (171)

(⇐) First, we define πX and πY to be the pair of morphisms corresponding to
idP under the isomorphism HomC×C((P, P), (X, Y)) ∼= HomC(P, P).453 Given two 453 Once more, we are making a forced choice. To

define the projections, we need two morphims
P→ X and P→ Y. By the natural isomorphism
of the hypothesis, it is enough to find a mor-
phism P→ P. We can only take idP as we know
nothing else about C.

morphisms f : A→ X and g : A→ Y, the isomorphism

HomC×C((A, A), (X, Y)) ∼= HomC(A, P)

yields a unique morphism ! : A→ P. To see that πX ◦ ! = f and πY ◦ ! = g we start
with idP in the top right of (172) which commutes by hypothesis.

HomC×C((P, P), (X, Y)) HomC(P, P)

HomC×C((A, A), (X, Y)) HomC(A, P)

∼

−◦(!,!)

∼

−◦! (172)

Corollary 407 (Dual). Let X, Y ∈ C0. The coproduct of X and Y exists if and only if
there exists S ∈ C0 such that HomC×C((X, Y), ∆C(−)) ∼= HomC(S,−). The coproduct
is S.454 454 We implicitly use the fact that (C× C)op ∼=

Cop × Cop.

In order to generalize these two results to arbitrary (co)limits, we define the
generalized version of ∆C.

132 ralph sarkis

Definition 408 (Generalized diagonal functor). Let J be a small category, the gen-

eralized diagonal functor ∆J
C : C ⇝ [J, C] sends an object X ∈ C0 to the constant

functor at X and a morphism f : X → Y ∈ C1 to the natural transformation whose
components are all f : X → Y.

We have ∆J
C(f) : X ⇒ Y because for any a ∈ J1,

the square below commutes.

X X

Y Y

f

X(a)=idX

f

Y(a)=idY
Remark 409. This is a generalization of the diagonal functor ∆C : C ⇝ C × C be-
cause, with the isomorphism [1+ 1, C] ∼= C×C described in Example 351.2, we can
identify ∆C with ∆1+1

C .

Proposition 410. Let F : J ⇝ C be a diagram. The limit of F exists if and only if there is
an object L ∈ C0 such that Nat(∆J

C(−), F) ∼= HomC(−, L).455 The tip of the limit cone 455 Recall that

Nat(∆J
C(−), F) = Nat(−, F) ◦ ∆J

C.

For this to be a functor Cop ⇝ Set, it is impor-
tant that J is small and C is locally small as it
guarantees the functor category [J, C] to be lo-
cally small too, hence Nat(∆J

C(X), F) is a set for
any X ∈ C0.

is L.

Proof. First, we note that for any X ∈ C0, a natural transformation ψ : ∆J
C(X) ⇒ F

is a cone over F with tip X. Indeed, for any a : A→ B ∈ J1, the naturality square in
(173) is commutative.

X X

FA FB

ψA

X(a)=idX

ψB

F(a)

(173)

This is equivalent to {ψA : X → FA}A∈J0 being a cone over F. Furthermore, a
morphism of cones ϕ→ ψ is a morphism f between the tips such that ∀A ∈ J0, ϕA =

ψA ◦ f . By looking at (174), we see this condition is equivalent to ϕ = ψ · ∆J
C(f).

Y Y

X X

FA FB
ψA ψB

F(a)

ϕA

ϕB

idY

f f

idX
(174)

(⇒) Let {ψA : L → FA}A∈J0 be the terminal cone over F (i.e. the limit) and
see it as a natural transformation ψ : ∆J

C(L) ⇒ F. We need to define a natural
isomorphism Nat(∆J

C(−), F) ∼= HomC(−, L). Similarly to the proofs of the previous
section, we will see that we only need to see where idL is sent to and the rest
of the natural transformation will construct itself. Our only choice for the cone
corresponding to idL is ψ (it is the only cone we know exists). Nat(∆J

C(L), F) HomC(L, L)

Nat(∆J
C(X), F) HomC(X, L)

−·∆J
C(f) −◦ f (175)Indeed, for any f : X → L the naturality square in (175) means the cone corre-

sponding to f : X → L is {ψA ◦ f : X → FA}A∈J0 by starting with idL in the top
right. Now, since ψ is the terminal cone, for any cone {ϕA : X → FA}A∈J0 , there is
a unique morphism of cones f : X → L which satisfies ∀A ∈ J0, ψA ◦ f = ϕA. We
conclude that f 7→ ψ · ∆J

C(f) is a natural isomorphism.
(⇐) Let ψ : ∆J

C(L) ⇒ F be the cone corresponding to idL ∈ HomC(L, L) under
the natural isomorphism, we will show it is terminal. By the commutativity of (175)
and bijectivity of the horizontal arrows, for any cone ϕ : ∆J

C(X) ⇒ F, there is a
unique morphism f : X → L such that ϕ = ψ · ∆J

C(f). By the first paragraph of the
proof, this is the unique morphism of cones showing ψ is terminal.

Corollary 411 (Dual). Let F : J ⇝ C be a diagram. The colimit of F exists if and only if
there is an object L ∈ C0 such that Nat(F, ∆J

C(−)) ∼= HomC(L,−). The tip of the colimit
cone is L.

Proposition 412. Let U : Mon ⇝ Set be the forgetful functor, A be a set and A∗ be the
free monoid on A, we have HomSet(A, U−) ∼= HomMon(A∗,−).

my first category theory textbook 133

Proof. We have already shown before Definition 288 that sending h : A → M to
h∗ : A∗ → M is a bijection of the desired type.456 Now, we need to show it is natural 456 In the other direction, h : A∗ → M is sent to

U(h) ◦ i where i : A ↪→ A∗ is the inclusion.in M. For any monoid homomorphism f : M → N, (176) commutes (we omitted
applications of U) because starting with h : A→ M, we have (f ◦ h)∗ = f ◦ h∗.457 457 To check this, let w = a1 · · · an ∈ A∗, we have

(f ◦ h)∗(w) = f h(a1) · · · f h(an)

= f (h(a1) · · · h(an))

= f (h∗(w)).

HomSet(A, M) HomMon(A∗, M)

HomSet(A, N) HomMon(A∗, N)

f ◦−

∼

f ◦−

∼

(176)

In the next Proposition, we will generalize this result to see how any universal
morphism corresponds to some kind of representability and we will even give a
converse direction. The generalizations of the proof is straightforward, so I suggest
you try to get familiar with a specific case in the next exercise.

SOL Exercise 413. Let C be a category and X ∈ C0 be such that − × X is a functor.
An object A ∈ C0 has an exponential AX ∈ C0 if and only if HomC(−× X, A) ∼=
HomC(−, AX).

Proposition 414. Let F : C⇝ D be a functor and X ∈ D0. There is a universal morphism
from X to F if and only if there exists A ∈ C0 such that HomD(X, F−) ∼= HomC(A,−).

Proof. (⇒) Let a : X → FA be a universal morphism, by definition, for any b : X →
FB, there is a unique morphism ϕB(b) : A → B such that F(ϕB(b)) ◦ a = b. In the
other direction, ϕ−1

B sending f : A→ B to F f ◦ a is the inverse of ϕB.458 Let us now 458 We check they are inverses:

ϕ−1
B (ϕB(b)) = F(ϕB(b)) ◦ a = b

ϕB(ϕ
−1
B (f)) = ϕB(F f ◦ a) = f .

check that ϕB is natural. For any m : B→ B′, (177) commutes because when starting
with f : A → B in the top right, the top path sends it to F f ◦ a then to Fm ◦ F f ◦ a
and the bottom path sends it to m ◦ f then to F(m ◦ f) ◦ a.

HomC(X, FB) HomD(A, B)

HomC(X, FB′) HomD(A, B′)

Fm◦−

∼

m◦−

∼

(177)

(⇐) Let a : X → FA be the image of idA : A → A under the isomorphism
HomC(X, FA) ∼= HomD(A, A), we claim that a is a universal morphism from X to F.
Given b : X → FB, let ϕB(b) be its image under the isomorphism HomC(X, FB) ∼=
HomD(A, B), it satisfies F(ϕB(b)) ◦ a = b because (178) commutes (start with idA

in the top right corner). The morphism ϕB(b) is unique with this property because
any other f : A→ B is the image of some b′ ̸= b under ϕB yielding F f ◦ a = b′ ̸= b.

HomC(X, FA) HomD(A, A)

HomC(X, FB) HomD(A, B)

F(ϕB(b))◦−

∼

ϕB(b)◦−

∼

(178)

Corollary 415 (Dual). Let F : C ⇝ D be a functor and X ∈ D0. There is a universal
morphism from F to X if and only if there exists A ∈ C0 such that HomD(F−, X) ∼=
HomC(−, A).

134 ralph sarkis

Comparing Propositions 410 and 414 and their duals, we infer that (co)limits
satisfy universal properties.

Theorem 416. Let F ∈ [J, C]0 be a diagram.

- The limit of F exists if and only if there is a universal morphism from ∆J
C to F.

- The colimit of F exists if and only if there is a universal morphism from F to ∆J
C.

In the next chapter, we will lift these correspondence to a more global version.
Namely, we will see how to assemble the universal morphisms for all diagrams of
shape J (if they all exist) into something called a right adjoint to ∆J

C.

7 Adjunctions
7.1 Equivalent Definitions 135

7.2 Results and Examples 141

Remark 417. Adjunctions are very much everywhere in mathematics (once you learn
to recognize them), and this inevitably means there are many angles to approach
a first understanding. We will only get to see my favorite here, it can be roughly
summarized in “adjunctions are global universal constructions”, but of course I
suggest you visit other resources to round out your intuitions.459 459 I think feeling comfortable with adjunctions

is a good signal that you are done with your
journey in so-called basic category theory, and
you are ready for the harder stuff (or you can
apply basic category theory to other stuff).

In Chapter 4 on universal properties, we gave categorical descriptions of im-
portant constructions in mathematics. We defined the free monoid on a set, the
abelianization of a group, and the exponential of a set by another one. The given set
(resp. group) on which the constructions are applied is part of the definitions we
gave, but we know that they can be applied to any set (resp. group). Therefore, one
might ask if it is possible to define (categorically) the construction as a whole. For
instance, the action of taking free monoids sends a set to a monoid, so it could be
the action on objects of a functor from Set to Mon.

We start by explainig how this functor arises simply from the existence of free
monoids on every set.460 More abstractly, we show that having an object FX with a 460 We spend a lot of time on this example, so

you might want to revisit your understanding
of free monoids before moving on.

universal property based on X for every X means that F is a functor. Moreover, we
will see that F is closely related to the functor used in the universal property. This
relation is what we call an adjunction. The rest of the chapter will be dedicated to
learning more about adjunctions through examples and properties.

7.1 Equivalent Definitions

There are four very commonly used defintions of an adjunction.461 We will start 461 Morally only three because one is dual to an-
other.from the one that is most directly linked to the concrete setting of free monoids, and

then develop the details (in the abstract setting) to get the other definitions. Finally,
we will prove the equivalence between the definitions.

Let us have two categories C and D and a functor R : D ⇝ C.462 Suppose that 462 In our concrete running example, C = Set,
D = Mon and R is the forgetful functor.for any X ∈ C0, we have a universal morphism from X to R, namely, we have an

object LX ∈ D0 and a morphism ηX : X → RLX satisfying a universal property as
in Definition 315 and summarized below.463 463 For free monoids, LX is the free monoid on

X, i.e. X∗, and ηX is the inclusion of X inside
X∗ (R only forgets the monoid structure).

136 ralph sarkis

X RLX LX

RA A

ηX

h
!

in Din C

R!
R (179)

We first show that the action X 7→ LX is functorial (yielding a functor L : C⇝ D).
For any f : X → Y, the universality of ηX yields a unique morphism L f : LX → LY
satisfying RL f ◦ ηX = ηY ◦ f as summarized in (180).464 464 For free monoids, L f : X∗ → Y∗ is the homo-

morphism defined inductively by L f (ε) = ε and
L f (w · x) = L f (w) · f (x). Concretely, it applies
f to every letter of the word.

X RLX LX

Y RLY LY

ηX

ηY◦ f L f

in Din C

RL ff

ηY

R (180)

The functoriality follows from the following equations showing that L(idX) = idLX

and L(g ◦ f) = Lg ◦ L f because these morphisms make the relevant diagrams com-
mute:465 465 The equations respectively show that idLX

makes (179) commute when h is replaced by idX
and Lg ◦ L f does it when h is replaced by g ◦ f .R(idLX) ◦ ηX = idRLX ◦ ηX = ηX = ηX ◦ idX

R(Lg ◦ L f) ◦ ηX = RLg ◦ RL f ◦ ηX = RLg ◦ ηY ◦ f = ηZ ◦ (g ◦ f).

Note that the definition of L on morphisms readily gives us that η is a natural
transformation idC ⇒ RL. The functor L constructed like that is called the left
adjoint to R.466 466 For free monoids, L is the free monoid func-

tor Mon ⇝ Set sending X to X∗ and it is the
left adjoint to the forgetful functor Mon⇝ Set.Definition 418 (Left adjoint). Let R : D ⇝ C be a functor. A functor L : C ⇝ D is

called the left adjoint to R if there exists a natural transformation η : idC ⇒ RL such
that for every X, ηX : X → RLX is a universal morphism from X to R, equivalently,
ηX is initial in ∆(X) ↓ R.

Following the construction of L with another family of universal morphisms to
R would yield another left adjoint. Thus, to justify the use of the definite article the,
we can prove that the two left adjoints would be naturally isomorphic.

Proposition 419. Let R : D ⇝ C be a functor, and L, L′ : C ⇝ D be two left adjoints to
R. Then, L ∼= L′.

Proof. Let η : idC ⇒ RL and η′ : idC ⇒ RL′ be the natural transformations witness-
ing L and L′ respectively as left adjoints to R. For any X, since both ηX : X → RLX
and η′X : X → RL′X are initial in ∆(X) ↓ R, they must be isomorphic inside this
comma category. This means there is an (unique) isomorphism ϕX : LX → LX′

making (181) commute. It is an isomorphism in ∆(X) ↓ R, but we find it is also
an isomorphism in D by applying the forgetful functor UR : ∆(X) ↓ R ⇝ D from
Exercise 320 (recall Exercise 187.4).

X RLX

RL′X
η′X

ηX

RϕX (181)

It remains to show these components assemble into a natural transformation, i.e.
that for any f : X → Y, L′ f ◦ ϕX = ϕY ◦ L f . We start by drawing the following two

my first category theory textbook 137

commutative diagrams.

X RLX X RLX

RLY RL′X

Y RL′Y Y RL′Y
η′Y

ηX

RL f

RϕY

f

ηY

f

η′Y

η′X

ηX

RϕX

RL′ f

(a)

(b)

(c)

(d)

(182)

We find that both ϕY ◦ L f and L′ f ◦ ϕX make (179) commute when h is replaced by
η′Y ◦ f . Thus, by uniqueness, they must be equal. We conclude that ϕ is a natural

Showing (182) commutes:

(a) NAT(η, X, Y, f).

(b) Definition of ϕ (181).

(c) Definition of ϕ (181).

(d) NAT(η′, X, Y, f).

isomorphism L⇒ L′.

The dual concept is called a right adjoint.

Definition 420 (Right adjoint). Let L : C ⇝ D be a functor. A functor R : D ⇝ C
is called the right adjoint to L is there exists a natural transformation ε : LR ⇒
idD such that for every X, εX : LRX → X is a universal morphism from L to X,

equivalently, εX is terminal in L ↓ ∆(X).

Corollary 421 (Dual). If R, R′ : D ⇝ C are two right adjoints to L : C ⇝ D, then
R ∼= R′.

Example 422 (Cartesian closedness). Let C be a category with all finite products
(in particular, binary ones and a terminal object). Given two objects A, X ∈ C0,
recall that their exponential exists if and only if there is a universal morphism
ev : AX × X → A from −× X to A.

Fixing X, if this exponential exists for every A ∈ C0, then a dual argument
to the one preceding Definition 418 shows that the assignment A 7→ AX yields a
functor C ⇝ C that is right adjoint to − × X : C ⇝ C from Exercise 297, and
moreover the evaluation morphisms are components of a natural transformation
(−)X×X ⇒ idC. By Definition 301, C is cartesian closed precisely when all functors
−× X have a right adjoint.

Example 423 (Free monoids). We saw that the free monoid functor (−)∗ : Set ⇝
Mon is left adjoint to the forgetful functor U : Mon ⇝ Set. We can also show

that U is right adjoint to (−)∗. For any monoid M ∈ Mon0, we need to define a
monoid homomorphism UM∗ → M. Since an element w ∈ UM∗ is a word whose
letters are elements of M, we can multiply all the letters together with the monoid
operation (the order does not matter thanks to associativity) to get one element of
M. We call this function c : UM∗ → M, and the fact that it is a homomorphism also
follows from associativity.

Now, for any set A and homomorphism h : A∗ → M, we know that the action
of h is completely determined by where it sends the single-letter words.467 More 467 You can see this as a consequence of either the

classical Definition 287 or the categorical Defini-
tion 288 of free monoids.

precisely, we know that if w = a1 · · · an is a word in A∗, then h(w) = h(a1) · · · h(an),
where · · · denotes here the multiplciation in M. If we instead see h(a1) · · · h(an)

as a word in UM∗, i.e. · · · denotes concatenation of letters, it can be obtained

138 ralph sarkis

by applying the restriction of h to A to every letter in w, i.e. h(a1) · · · h(an) =

h|A∗(a1 · · · an) = h|A∗(w). This lets us see that h|A : A → UM is the unique
function satisfying c(h|A∗) = h, and we conclude that c satisfies the appropriate
universal property summarized in (183).

M UM∗ UM

A∗ A

c

h|A∗
h

g

in Setin Mon

(−)∗

(183)
As for exponentials, we find that U is right adjoint to (−)∗.

In our running example, we now have a pair of functors ((−)∗ and U) adjoint to
each other, one left adjoint and the other right adjoint. It turns out we can develop
Example 423 abstractly and show that when L is left adjoint to R, then R is right
adjoint to L, and vice-versa by duality.

Proposition 424. Let L : C ⇝ D and R : D ⇝ C be two functors. If L is left adjoint to
R, then R is right adjoint to L.

Proof. Let η : idC ⇒ RL be the natural transformation witnessing L as left adjoint
to R. We first define the components of a natural transformation ε : LR⇒ idD. For
X ∈ D0, we need a morphism LRX → X in D, and we know from the universal
property of ηRX that it is enough to find a morphism RX → RX. Of course we take
the identity, and we let εX be the unique morphism given by the universality of ηRX

such that R(εX) ◦ ηRX = idRX (see (184)).
RX RLRX LRX

RX X

ηRX

idRX
εX

in Din C

RεX
R

(184)
Next, we show that εX : LRX → X is a universal morphism from L to X. For any

f : LA → X, if g : A → RX ∈ C1 is such that f = εX ◦ Lg, then applying R and
pre-composing with ηA, we obtain

R f ◦ ηA = RεX ◦ RLg ◦ ηA

= RεX ◦ ηRX ◦ g NAT(η, A, RX, g)

= idRX ◦ g definition of εX

= g.

We conclude that g := R f ◦ ηA is the unique morphism satisfying that f = εX ◦ Lg,
hence εX is universal.

Finally, we show that ε : LR ⇒ idD is natural. For any f : X → Y ∈ D1, by
universality, there is a unique morphism g : RX → RY such that f ◦ εX = εY ◦ Lg

(see (185)) and by our derivation above, g = R f ◦ RεX ◦ ηRX
(184)
= R f . Thus, we find

that f ◦ εX = εY ◦ LR f , namely ε is natural.

Y LRY RY

X LRX RX

εY

LgεX◦ f g

in Cin D

εX

f L

(185)As a sanity check, notice that using the definition of εM in the case of free
monoids, we get back the homomorphism c from Example 423. Indeed, instan-
tiating (184), we find εM : UM∗ → M is the unique homomorphism that acts like
identity on single-letter words M (recall ηUM sends x ∈ UM to the word x ∈ UM∗).
It is easy to check c also acts like identity on single-letter words, so εM and c coincide
by uniqueness.

Corollary 425 (Dual). If R is right adjoint to L, then L is left adjoint to R.

This makes Definitions 418 and 420 a bit unsatisfactory because they seem to
focus on one side of relation between two functors. To resolve this, we bring up two

my first category theory textbook 139

important properties that arise from having a left and right adjoint, and we will see
these also characterize adjoints.

First, we note that η : idC ⇒ RL and ε : LR ⇒ idD seem to have the right
type to give rise to an equivalence between C and D. However, in general, nothing
guarantees the components of η and ε are isomorphisms.468 There is still some kind 468 It is clearly not the case in the free monoids

example.of invertibility property: η and ε satisfy the the triangle identities shown in (186)
and (187) (they are commutative diagrams in [C, D] and [D, C] respectively).

L LRL

L
1L

Lη

εL (186)
RLR R

R

ηR

Rε
1R

(187)

The second one holds by definition of εX (for any X ∈ D0, RεX ◦ ηRX = idRX).
For the first one, by universality of εX , there is a unique morphism g : X → RLX
such that εLX ◦ Lg = idLX (see (188)), and by our derivation in the previous proof,
g = R(idLX) ◦ ηX = ηX . We find that εLX ◦ LηX = idLX as desired.

LX LRLX RLX

LX X

εLX

Lg
idLX

g

in Cin D

L

(188)
It is simple, but not very illuminating to see how these triangle identities hold in

the free monoids example. Conversely, the next characterization of adjoints is in the
spotlight of our running example. It abstractly states the slogan that it is the same
thing to give a homomorphism out of the free monoid A∗ or a function out of the
set A.

Formally, we find a natural isomorphism469 469 For free monoids, this gives

HomSet(A, M) ∼= HomMon(A∗, M),

which is inded what the slogan means.
Φ : HomC(−, R−) ∼= HomD(L−,−) : Φ−1.

For g : X → RY, we define ΦX,Y(g) = εY ◦ Lg and for f : LX → Y, we define
Φ−1

X,Y(f) = R f ◦ ηX .470 The derivations below show these are inverses (and it only 470 You can certainly infer these definitions just
by looking at the types. Also note because
it will be useful that ΦX,Y(idRX) = εX and
Φ−1

X,Y(idLX) = ηX .

relies on the triangle identities and naturality):

Φ−1
X,Y(ΦX,Y(g)) = RεY ◦ RLg ◦ ηX = RεY ◦ ηRY ◦ g = g (189)

ΦX,Y(Φ−1
X,Y(f)) = εY ◦ LR f ◦ LηX = f ◦ εLX ◦ LηX = f . (190)

To show that Φ is natural, we need to show that (191) commutes for any x : X′ → X
and y : Y → Y′. Starting with g : X → RY in the top left, the bottom path sends it
to Ry ◦ g ◦ x then to εY′ ◦ LRy ◦ Lg ◦ Lx and the top path sends g to εY ◦ Lg then to
y ◦ εY ◦ Lg ◦ Lx. The end results are equal by NAT(ε, Y, Y′, y).

HomC(X, RY) HomD(LX, Y)

HomC(X′, RY′) HomD(LX′, Y′)

Ry◦−◦x

ΦX,Y

y◦−◦Lx

ΦX′ ,Y′

(191)

We can now give an unbiased definition (not focused on one side) of adjunction.

Definition 426 (Adjunction). An adjunction between a functor L : C ⇝ D and
R : D⇝ C is the following data:

- A natural transformation η : idC ⇒ RL called the unit such that ηX is initial in
∆(X) ↓ R for each X ∈ C0.

- A natural transformation ε : LR⇒ idD called the counit such that εX is terminal
in L ↓ ∆(X) for each X ∈ D0.

- The unit η and counit ε satisfy the triangle identities.

140 ralph sarkis

- A natural isomorphism Φ : HomC(−, R−) ∼= HomD(L−,−) : Φ−1 such that
ΦRX,X(idRX) = εX and Φ−1

X,LX(idLX) = ηX .471 471 It follows by naturality that ΦX,Y(g) = εY ◦ Lg
and Φ−1

X,Y(f) = R f ◦ ηX , as we had above.

We denote C : L ⊣ R : D when there is an adjunction between L : C ⇝ D and
R : D⇝ C and we call L the left adjoint and R the right adjoint, and we say L and
R are adjoints.472 472 When they are clear from the context or irrel-

evant, we omit the categories from the notation
and write L ⊣ R.Example 427 (Boring). The identity functor on any category is self-adjoint: idC ⊣

idC. Both the unit and counit are 1idC .473 473 You can prove this easily but it also follows
from Proposition 435 and the fact that idC is its
own inverse.While we resolved the bias in our definitions of adjoints, it cost us brevity. The

culminating point of this section is the proof that all this data is not necessary to
define an adjunction, giving only one of the fours points is enough. In other words,
Definition 426 gives in fact four equivalent definitions of an adjunction.474 474 There are still more equivalent definitions,

but we have to limit ourselves to a finite list and
we mentioned the parts of an adjunction that are
most commonly used. One notable omission is
that of adjunctions as Kan extensions.

Theorem 428. Two functors L : C⇝ D and R : D⇝ C are adjoints if at least one of the
following holds.

i. There is a natural transformation η : idC ⇒ RL such that ηX is initial in ∆(X) ↓ R
for each X ∈ C0.

ii. There is a natural transformation ε : LR⇒ idD such that εX is terminal in L ↓ ∆(X)

for each X ∈ D0.

iii. There are two natural transformations η : idC ⇒ RL and ε : LR ⇒ idD that satisfy
the triangle identities.475 475 They satisfy

εL · Lη = 1L Rε · ηR = 1R.

iv. There is a natural isomorphism Φ : HomC(−, R−) ∼= HomD(L−,−) : Φ−1.

Proof. We have already shown that (i) gives rise to all the data of an adjunction at
the start of the chapter.

For (ii), we can use duality. Indeed, taking the dual of Definition 426, we see that
C : L ⊣ R : D if and only if Dop : Rop ⊣ Lop : Cop and η and ε swap their roles as
unit and counit. Hence, from ε, we can derive an adjunction Rop ⊣ Lop as we did at
the start of the chapter and duality yields L ⊣ R.

For (iii), it is enough to show the components of the unit ηX are initial in ∆(X) ↓
R and use (i).476 Recall from (189) and (190) that for any g : X → RY ∈ C1, 476 You can check that the triangle identities en-

sure that the adjunction constructed from (i) will
have ε as a counit.

there is a unique (because the components of Φ and Φ−1 are bijections) morphism
ΦX,Y(g) = εY ◦ Lg such that R(ΦX,Y(g)) ◦ ηX = Φ−1

X,Y(ΦX,Y(g)) = g. Thus, ηX is a
universal morphism as required.

For (iv), we will construct a unit satisfying (i). Fix X ∈ C0, we have a natural
isomorphism ΦX,− : HomC(X, R−) ∼= HomD(LX,−). By Proposition 414, there
is a universal morphism ηX : X → RLX from X to R.477 This yields a natural 477 From the proof of Proposition 414, we recover

ηX = Φ−1
X,LX(idLX).transformation η : idC ⇒ RL because for any f : X → Y, the commutativity of

(192) implies (by starting with idLX and idLY in the top left and top right corners

https://en.wikipedia.org/wiki/Kan_extension

my first category theory textbook 141

respectively) RL f ◦ ηX = Φ−1
X,LY(L f) = ηY ◦ f .

HomD(LX, LX) HomD(LX, LY) HomD(LY, LY)

HomC(X, RLX) HomC(X, RLY) HomC(Y, RLY)
RL f ◦−

ΦX,LX

L f ◦−

ΦX,LY

−◦L f

−◦ f

ΦY,LY (192)

You can check the natural isomorphism constructed with (i) coincides with Φ.

Each item of Theorem 428 can be seen as a definition of adjunctions.478 We 478 That is how most textbooks present it.

would like to spend a bit more time on point (iv) which is, in our opinion, the
hardest definition to internalize and yet the easiest one to use in concrete contexts.
The definition of an adjunction according to (iv) can be stated as follows.

Two functors L : C ⇝ D and R : D ⇝ C are adjoint if there is a natural isomor-
phism479 479 We use Remark 147 to define

HomC(−, R−) := HomC(−,−) ◦ (idCop × R)

HomD(L−,−) := HomD(−,−) ◦ (Lop × idD)

HomC(−, R−) ∼= HomD(L−,−).

Less concisely, for any X ∈ C0 and Y ∈ D0, there is an isomorphism ΦX,Y :
HomC(X, RY) ∼= HomD(LX, Y) such that for any f : X → X′ ∈ C1 and g :

Y → Y′ ∈ D1, (193) commutes. We split the naturality in two squares because we
will often use one square on its own480 as we did on both sides of (192). 480 This is possible by Exercise 344.

HomC(X′, RY) HomC(X, RY) HomC(X, RY′)

HomD(LX′, Y) HomD(LX, Y) HomD(LX, Y′)

Rg◦−

ΦX,Y

g◦−

ΦX,Y′ΦX′ ,Y

−◦ f

−◦L f

(193)

In a very informal sense, the bijections ΦX,Y let us embed C in D and vice-versa
in a compatible way, that is, morphisms between X ∈ C0 and Y ∈ D0 can be seen
either by viewing X in D via L or viewing Y in C via R.481 481 For the adjunction Set : (−)∗ ⊣ U : Mon, any

set can be viewed as the monoid of words over
it, and any monoid can be viewed as a set by
forgetting the operation.

To make proofs go smoother, we will often use the superscript notation (−)t to
denote an application of a component of Φ or Φ−1. That is, for any X ∈ C0 and
Y ∈ D0, we have

(−)t : HomC(X, RY) ∼= HomD(LX, Y) : (−)t.

We call f t the transpose of f .482
482 Unfortunately, the term transpose is probably
inspired by matrix transposition, but I do not
know of a technical way to realize one as an in-
stance of the other. Some authors also write f ∗

or f ♯ for the transpose of f .
7.2 Results and Examples

There are a couple of very important results in this section (Theorem 441 and The-
orem 446), but we will start slow.

We already proved in Proposition 419 that two left adjoints to the same functor
must be isomorphic.483 That proof used the first definition of left adjoints we saw 483 With our new notation: if L ⊣ R and L′ ⊣ R,

then L ∼= L′, and dually if L ⊣ R and L ⊣ R′,
then R ∼= R′.

with a natural family of universal morphisms. Let us prove the same thing, but
relying on our two new definitions instead.484

484 We omit the second item in Definition 426 be-
cause it is dual to the proof we already gave.

https://en.wikipedia.org/wiki/Transpose

142 ralph sarkis

Proof of Proposition 419 via triangle identities. Let η and ε be the unit and counit of
the adjunction C : L ⊣ R : D, η′ and ε′ be those of C : L′ ⊣ R : D. Guided by the
types, it is easy to compose the natural transformations we have to obtain two new
natural transformations of type L⇒ L′ and L′ ⇒ L:

ϕ = L
Lη′
=⇒ LRL′ εL′

=⇒ L′ and ϕ−1 = L′
L′η
=⇒ L′RL ε′L

=⇒ L.

It remains to show ϕ−1 is the inverse of ϕ. We show ϕ−1 ◦ ϕ = 1L by paving the
following diagram (it lives in [C, D]).

Showing (194) commutes:

(a) Apply L(−)′ to HOR(η′, η).

(b) By HOR(εL′, η) or HOR(ε, L′η).

(c) Apply (−)L to HOR(ε, ε′).

(d) Apply L(−)L to the triangle identity (187)
instantiated for η′ and ε′.

(e) Apply the triangle identity (186) for η and
ε.

L LRL′ L′ L′RL L

LRL′RL

L LRL LRL L

L

Lη′ εL′ L′η ε′L

LRL′η

Lη′RL

εL′RL

LRε′L

Lη εL

(b)

ϕ ϕ−1

(a) (c)

(d)

(e)

(194)

We leave you to show ϕ ◦ ϕ−1 by paving a similar diagram (where L, η and ε swap
roles with L′, η′ and ε′).

Proof of Proposition 419 via transposes. For any X ∈ C0, we define ϕX : LX → L′X
to be the image of idL′X ∈ HomD(L′X, L′X) under the composition of the natural
isomorphisms

HomD(L′X, L′X) ∼= HomC(X, RL′X) ∼= HomD(LX, L′X).

Then, for any f : X → Y, the naturality squares in (195) imply L′ f ◦ ϕX = ϕY ◦ L f .485 485 Start with idL′X and idL′Y at the top left and
top right respectively and compare the results at
the bottom middle.

HomD(L′X, L′X) HomD(L′X, L′Y) HomD(L′Y, L′Y)

HomC(X, RL′X) HomC(X, RLY) HomC(Y, RLY)

HomD(LX, L′X) HomD(LX, L′Y) HomD(LY, L′Y)
L′ f ◦−

RL′ f ◦−

L′ f ◦− −◦L′ f

−◦ f

−◦L f

(195)

We conclude that ϕ : L ⇒ L′ is natural. With a symmetric argument, we construct
ϕ−1 : L′ ⇒ L486 and we check that they are inverses with (196) and (197). 486 i.e.: ϕ−1

X is the image of idLX under

HomD(LX, LX) ∼= HomC(X, RLX) ∼= HomD(L′X, LX).
HomD(LX, LX) HomD(LX, L′X)

HomD(L′X, LX) HomD(L′X, L′X)

ϕX◦−

ϕX◦−

(196)

my first category theory textbook 143

HomD(L′X, L′X) HomD(L′X, LX)

HomD(LX, L′X) HomD(LX, LX)

ϕ−1
X ◦−

ϕ−1
X ◦−

(197)

Starting with idLX in the top left of (196) and reaching the top right, we find that
the image of ϕX ◦ ϕ−1

X under the isomorphism is ϕX which is the image of idL′X ,
thus ϕX ◦ ϕ−1

X = idL′X . We proceed with a symmetric argument for (197).

Of the three different proofs of Proposition 419, the second one using the triangle
identities seems to be the quickest. You can judge for yourself which proof you pre-
fer. In the rest of this chapter, we will see many examples of adjunctions and results
about adjoint functors and try to have a balance between the different definitions
we use.487 487 We try to care about which definition is easi-

est to use.We start with a converse to Proposition 419. When L has a right adjoint R and
R′ is isomorphic to R, then R′ is also right adjoint to L.

SOL Exercise 429. Show that if C : L ⊣ R : D is an adjunction and R ∼= R′, then L ⊣ R′.
State the dual statement and prove it.

Our main point in the introduction to this chapter was that grouping universal
morphisms together as we did into an adjunction yields a notion of global universal
construction. In particular, we can characterize when a category has all (co)limits of
shape J.

Theorem 430. A category C has all limits of shape J if (and only if)488 the functor ∆J
C has 488

a right adjoint.

Proof. (⇒) For each diagram F : J ⇝ C, we pick (with the axiom of choice) a limit
limJF given by completeness and a universal morphism ∆J

C → F given by Theorem
416. By our argument at the start of the chapter, we get an adjunction ∆J

C ⊣ limJ.
(⇐) Suppose C : ∆J

C ⊣ L : [J, C] with unit η and let F : J ⇝ C be a diagram.
By definiton, ηF : ∆J

CL(F) → F is a universal morphism from ∆J
C to F. Thus, by

Theorem 416, L(F) is the limit of F.

Corollary 431 (Dual). A category C has all colimits of shape J if and only if the functor
∆J

C has a left adjoint.

We saw how families of universal morphisms give rise to an adjunction, so we
could make our examples from Chapter 4 into adjunctions. Here, we carry out a
similar but new example.

Example 432. Recall from Exercise 224 the maybe functor −+ 1. Denote 1 = {∗}
for the terminal object of Set. We consider a very similar functor −+ 1 : Set⇝ Set∗
sending a set X to (X + 1, ∗) and f : X → Y to f + id1 : X + 1 → Y + 1. In the
other direction, we have the forgetful functor U : Set∗ ⇝ Set that forgets about the
distinguished element of a pointed set. We claim that −+ 1 ⊣ U.

First, for every set X, we need to define ηX : X → U((X + 1, ∗)) = X + 1. The
only obvious choice is to let ηX be the inclusion of X in X + 1 and one can check it
makes η into a natural transformation idSet ⇒ U(−+ 1).

Check η and ε are natural:

X X + 1

Y Y + 1

f

ηX

f+id1

ηY

(X, x) (X + 1, ∗)

(Y, y) (Y + 1, ∗)

f

ε(X,x)

f+id1

ε(Y,y)

Second, for every pointed set (X, x), we need to define ε(X,x) : (X + 1, ∗) →
(X, x). Again, there is one clear choice, i.e.: acting like the identity on X and
sending ∗ to x, we will denote ε(X,x) = [idX , ∗ 7→ x].

144 ralph sarkis

Finally, after checking the triangle identities which we instantiate below,489 we 489 When dealing with a set (X + 1) + 1, we will
denote ∗ for the element of the inner 1 and ⋆ for
the outer one.

In (199), X = U(X, x).

conclude that −+ 1 ⊣ U.

(X + 1, ∗) ((X + 1) + 1, ⋆)

(X + 1, ∗)

ηX+id1

[idX+1 ,⋆ 7→∗]
idX+1

(198)

X X + 1

X

ηX

[idX ,∗7→x]
idX

(199)

A good exercise in categorical thinking is to generalize this example to an arbitrary
category C with binary coproducts and a terminal object.490 490 See ... for a solution.

Example 433 (Top). Let U : Top⇝ Set be the forgetful functor sending a topologi-
cal space to its underlying set. We will find a left and a right adjoint to U.

Left adjoint: Fix a topological space (X, τ) and a set Y. We need to find a
topological space (LY, λ) so that continuous functions (LY, λ) → (X, τ) are in cor-
respondence with functions Y → X. It turns out there is a trivial topology that we
can put on Y that makes any function f : Y → X continuous, it is called the dis-
crete topology and contains all the subsets of Y.491 We can check that any function 491 It is clear that the set of all subsets of Y is

a topology because any union or intersection of
subsets is still a subset.

f : Y → X is continuous relative to the discrete topology because for any open set
U ∈ τ, f−1(U) is a subset of Y and hence it is open in (Y,P(Y)). After checking
that sending Y to (Y,P(Y)) and f : Y → Y′ to f : (Y,P(Y)) → (Y′,P(Y′)) is a
functor, we denote it disc, we find can conclude that disc ⊣ U.

Right adjoint: Fix a topological space (X, τ) and a set Y. We need to find a
topological space (LY, λ) so that continuous functions (X, τ) → (LY, λ) are in cor-
respondence with functions X → Y. Again, there is a trivial topology that we can
put on Y that makes any function f : X → Y continuous, it is called the codis-
crete topology and contains only the empty set and the full space Y.492 We can 492 Since ∅∩Y = ∅ and ∅∪Y, we conclude that

{∅, Y} is closed under any union and intersec-
tion, hence it is a topology.

check that any function f : X → Y is continuous relative to the codiscrete topol-
ogy because the f−1(∅) = ∅ and f−1(Y) = X must be open by the definition
of a topology. After checking that sending Y to (Y, {∅, Y}) and f : Y → Y′ to
f : (Y, {∅, Y}) → (Y′, {∅, Y′}) is a functor, we denote it codisc, we can conclude
that U ⊣ codisc.

We found our first chain of adjunctions disc ⊣ U ⊣ codisc. Another interesting
one is colimJ ⊣ ∆J

C ⊣ limJ in a category C with all limits and colimits of shape
J. A less interesting one is · · · ⊣ idC ⊣ idC ⊣ idC ⊣ · · · . Here is a chain of five
adjunctions.

SOL Exercise 434. Let C be a category and id, s, t be the functors described in Exercise
323. Show they are related by the adjunctions t ⊣ id ⊣ s. Suppose furthermore that
C has an initial object ∅ and a terminal object 1. Show that the constant functor at
id∅ is left adjoint to t and the constant functor at id1 is right adjoint to s.

As a final example, we show that any equivalence gives rise to two adjunctions.
In this sense493, one can see a left (resp. right) adjoint to a functor F as an approxi- 493 And in another sense related to Kan exten-

sions.mation to a left (resp. right) inverse that is even coarser than a quasi-inverse.494

494 Furthermore, it follows from Proposition 419

(resp. Corollary 421) that the left (resp. right)
adjoint of F is the left (resp. right) inverse or
quasi-inverse when the latter exists.

https://en.wikipedia.org/wiki/Kan_extension

my first category theory textbook 145

Proposition 435. Let L : C ⇝ D and R : D ⇝ C be quasi-inverses, then L ⊣ R and
R ⊣ L.

Proof. It is enough to show L ⊣ R as the definition of quasi-inverses is symmetric.

Proposition 436. Let C : L ⊣ R : D be adjoint functors and X, Y ∈ D0. If X × Y exists,
then R(X×Y) with the projections R(πX) and R(πY) is the product R(X)× R(Y).495 495 In other words, right adjoints preserve binary

products.

Proof. Let pX : A→ RX and pY : A→ RY be such that (200) commutes.

A

RX R(X×Y) RY

pX pY

RπX RπY

(200)

We need to show there is a unique mediating morphism A → R(X × Y). First, we
will get rid of the applications of R at the bottom, in order to use the universal
property of the product X × Y. To do this, we apply L to (200) and use the counit
ε : LR⇒ idD to obtain (201).

LA

LRX LR(X×Y) LRY

X X×Y Y

LpX LpY

LRπX LRπY

εX×YεX εY

πX πY

(201)

LA

LRX LRY

X X×Y Y

LpX LpY

εX εY

πX πY

!
The universal property of X × Y tells us there is a unique ! : LA → X × Y such

that πX ◦ ! = εX ◦ LpX and πY ◦ ! = εY ◦ LpY. We claim that !t is the mediating
morphism of (200), i.e.: RπX ◦ !t = pX and RπY ◦ !t = pY. Using the adjunction
L ⊣ R, we obtain the following commutative square.

HomD(LA, X×Y) HomC(A, R(X×Y))

HomD(LA, X) HomC(A, RX)

RπX◦−πX◦− (202)

Now, starting with ! on the top left corner, we obtain the following derivation.

pX = pX
tt

= (εX ◦ LpX)
t

= (πX ◦ !)t definition of !

= RπX ◦ !t commutativity of (202)
A

RX R(X×Y) RY

pX pY

RπX RπY

!t (203)Replacing X with Y in the previous argument shows !t makes (203) commute. For
the uniqueness, note that if m : A → R(X × Y) can replace !t, then (204) commutes

146 ralph sarkis

which implies by uniqueness of ! that mt = εX×Y ◦ Lm = !. Transposing yields
!t = m.

LA

LRX LR(X×Y) LRY

X X×Y Y

LpX LpY

LRπX LRπY

εX×YεX εY

πX πY

Lm

(204)

Corollary 437 (Dual). Let C : L ⊣ R : D be adjoint functors and A, B ∈ C0. If A + B
exists, then L(A + B) with the coprojections LκA and LκB is the coproduct LA× LB.496 496 In other words, left adjoints preserve binary

coproducts.

Proposition 438. Let C : L ⊣ R : D be adjoint functors. If g : X → Y ∈ D1 is monic,
then R(g) is monic.497 497 In other words, right adjoints preserve

monomorphisms.

Proof. Let h1, h2 : Z → R(X) be such that R(g) ◦ h1 = R(g) ◦ h2, we need to show
that h1 = h2. Since L ⊣ R, we have the following commutative square.

HomC(Z, RX) HomD(LZ, X)

HomC(Z, RY) HomD(LZ, Y)

Rg◦− g◦− (205)

Starting with h1 and h2 in the top left corner, we find that498 498 The first and last equality follow from com-
mutativity of (205) and the middle equality is a
hypothesis.g ◦ h1

t = (Rg ◦ h1)
t = (Rg ◦ h2)

t = g ◦ h2
t,

which, by monicity of g implies h1
t = h2

t. This in turn means that h1 = h2 because
(−)t is a bijection.

Corollary 439 (Dual). Let C : L ⊣ R : D be adjoint functors. If f : A → B ∈ C1 is epic,
then L(f) is epic.499 499 In other words, left adjoints preserve epimor-

phisms.

Remark 440. We want to put the emphasis on a crucial step in the proof above which
was to derive g ◦ h1

t = (Rg ◦ h1)
t from (205). By varying the arguments slightly

(i.e.: going around the square in another direction or considering the naturality
square involving pre-composition), we cook up four similar equations that can be
helpful.500 500 For instance, (207) was a crucial step in the

proof of Proposition 436: we used (202) to derive
(πX ◦ !)t = RπX ◦ !t.∀g : X → Y, f : Z → RX, g ◦ f t = (Rg ◦ f)t (206)

∀g : X → Y, f : LZ → X, (g ◦ f)t = Rg ◦ f t (207)

∀g : LX → Y, f : Z → X, gt ◦ f = (g ◦ L f)t (208)

∀g : X → RY, f : Z → X, (g ◦ f)t = gt ◦ L f (209)

Theorem 441. Right adjoints are continuous.

my first category theory textbook 147

Proof. Let C : L ⊣ R : D be an adjunction and F : J ⇝ D be a diagram in D whose
limit cone is {ℓX : limF → FX}X∈J0

. We claim that {RℓX : RlimF → RFX}J0
is the

limit cone of R ◦ F. For any other cone making (210) commute for any f : X →
Y ∈ J1, we can apply transposition to the cX’s to obtain (211) which commutes by
(206).501 501 In (206), putting g := F f and f := cX , we

obtain

cY
t = (RF f ◦ cX)

t = F f ◦ cX
t.C

RlimF

RFX RFY

RℓX

RF f

RℓY

cX cY
(210)

LC

limF

FX FY

ℓX

F f

ℓY

cX
t cY

t

(211)

By the universal property of limF, there is a unique mediating morphism ! : LC →
limF making (212) commute. Transposing ! yields a mediating morphism making

(213) commutes by (207).502 502 In (207), putting g := ℓX and f := !, we obtain

cX = (cX
t)

t
= (ℓX ◦ !)t = RℓX ◦ !t.

Symmetrically, we have

cY = (cY
t)

t
= (ℓY ◦ !)t = RℓY ◦ !t.

LC

limF

FX FY

ℓX

F f

ℓY

cX
t cY

t!

(212)

C

RlimF

RFX RFY

RℓX

RF f

RℓY

cX cY
!t

(213)

Finally, !t is the only mediating morphism that fits in (213) because if m : C → RlimF
fits, then mt : LC → limF fits in (212)503 and by uniqueness of !, mt = ! which further 503 Suppose RℓX ◦ m = cX , then we use (206) to

conclude

cX
t = (RℓX ◦m)t = ℓX ◦mt,

and similarly for Y.

implies m = !t.

Corollary 442 (Dual). Left adjoints are cocontinuous.

Theorem 443. If C : L ⊣ R : D and D : L′ ⊣ R′ : E are two adjunctions, then
C : L′L ⊣ RR′ : E is an adjunction.504 504 This theorem is often referred to as adjunc-

tions can be composed.

Proof. Let η and ε be the unit and counit of the first adjunction and η′ and ε′ be the
unit and counit of the second one. We define the following unit and counit for the
composite adjunction:

η̂ = Rη′L · η : idC ⇒ RR′L′L

ε̂ = ε′ · L′εR′ : L′LRR′ ⇒ idE.

The following diagrams show the triangle identities.

Showing (214) commutes:

(a) Apply L′(−) to the left triangle identity of
η and ε.

(b) Apply L′(−)L to HOR(ε, η′).

(c) Apply (−)L to the left triangle identity of
η′ and ε′.

148 ralph sarkis

L′L L′LRL L′LRR′L′L

L′L L′R′L′L

L′L

1L′L

L′Lη̂

ε̂L′L

L′Lη L′LRη′L

L′εR′L′L

ε′L′L

L′εL

L′η′L

1L′L

1L′L
(a) (b)

(c)

(214)

Showing (215) commutes:

(a) Apply R(−)R′ to HOR(η′, ε).

(b) Apply (−)R′ to the right triangle identity of
η and ε.

(c) Apply R(−) to the right triangle identity of
η′ and ε′.

RR′L′LRR′ RLRR′ RR′

RR′L′R′ RR′

RR′

1RR′

η̂RR′

RR′ ε̂

ηRR′Rη′LRR′

RR′L′εR′

RR′ε′

RεR′

Rη′R′

1RR′

1RR′
(b)(a)

(c)

(215)

Proposition 444. If D : L ⊣ R : E is an adjunction, then there is an adjunction [C, D] :
(L ◦ −) ⊣ (R ◦ −) : [C, E].

Proof. We simplify the notation a little bit by writing L− and R− instead of L ◦ −
and R ◦ − respectively. First, we can see that L− and R− are functors by Exercise
372,505 they send a natural transformation ϕ : F ⇒ G to Lϕ and Rϕ respectively. 505 They are compositions:

L− = (− ◦−) ◦ (∆(L)× id[C,D])

R− = (− ◦−) ◦ (∆(R)× id[C,E]).

Alternatively, we can use Example 373.5 where
we described currying for functors. In that set-
ting, we have

L− = Λ(− ◦−)(L)

R− = Λ(− ◦−)(R).

Composing them yields RL− : [C, D] ⇝ [C, D] and LR− : [C, E] ⇝ [C, E]. Let
η : idD ⇒ RL and ε : LR ⇒ idE be the unit and counit of L ⊣ R. We claim that
η− = F 7→ ηF and ε− = G 7→ εG are the unit and counit of an adjunction L− ⊣ R−.

To see that η− and ε− are natural transformations of the right type, we can
recognize them in the image of Λ(− ◦ −) (noting that idD− = id[C,D] and idE− =

id[C,E]):

η− = Λ(− ◦−)(η) : id[C,D] ⇒ RL−

ε− = Λ(− ◦−)(ε) : LR− ⇒ id[C,E].

It is left to show the triangle identities hold assuming they hold for η and ε. In the
following derivations, we use three simple facts:506 506 They can be shown by proving the equality at

each component.

- the biaction of F− and G− on ϕ− yields (FϕG)−,

- (ϕ−) · (ϕ′−) = (ϕ · ϕ′)−, and

my first category theory textbook 149

- (1F)− = 1F−.

Now, the triangle identities hold by:

(ε−)(L−) · (L−)(η−) = (εL−) · (Lη−) = (εL · Lη)− = (1L)− = 1L−

(R−)(ε−) · (η−)(R−) = (Rε−) · (ηR−) = (Rε · ηR)− = (1R)− = 1R−.

Corollary 445 (Dual). If D : L ⊣ R : E is an adjunction, then there is an adjunction
[C, D] : −L ⊣ −R : [C, E].

Theorem 446. Let D be a category with all limits of shape J. For any category C, the
functor category [C, D] has all limits of shape J and the limit of any diagram F : J⇝ [C, D]

satisfies for any X ∈ C0, (limJF)(X) = limJ(F(−)(X)).507 507 This means limits in functor categories are
taken pointwise, just like we proved in Theorem
353Proof. From previous results, we have the following chain of adjunctions.

[C, D] [C, [J, D]] [C× J, D] [J× C, D] [J, [C, D]]
Λ−1limJ◦−

Λ

−◦swap−1

−◦swapΛ−1∆J
D◦−

Λ

⊣⊣⊣⊣ (216)

From left to right. The first adjunction is induced by Proposition 444 and the ad-
junction ∆J

D ⊣ limJ given by completeness of D. The second adjunction is obtained
from Proposition 435 and the fact that Λ and Λ−1 are inverses. The third adjunction
is induced by Corollary 445 and the canonical isomorphism swap : C× J⇝ J×C.508 508 One could also see that − ◦ swap and − ◦

swap−1 are inverses.The fourth adjunction is similar to the second one.
There is a simpler way to describe the composition of the three rightmost ad-

junctions. If we view a functor F : C⇝ [J, D] as taking two arguments and write it
F(−1)(−2), the composition Λ ◦ (− ◦ swap) ◦ Λ−1 (the top path) swaps the order of
the arguments to yield the functor F(−2)(−1) : J⇝ [C, D]. The bottom path swaps
back the arguments.

Next, we show that the composition of the top path is ∆J
[C,D]

. Starting with a

functor F : C ⇝ D, the first left adjoint sends it to ∆J
D ◦ F which sends X ∈ C0 to

the constant functor at FX and f : X → Y ∈ C1 to the natural transformation whose
components are all F f : FX → FY. Applying the three other left adjoints, we obtain
a functor which sends any j ∈ J0 to the functor F and any m : j→ j′ ∈ J1 to 1F. We
conclude that the top path sends F to the constant functor at F.

We obtain a right adjoint to ∆J
[C,D]

by composing all the right adjoins in (216)
with Theorem 443 and thus [C, D] has all limits of shape J. To compute them, we
can compose the right adjoints in (216) to find (limJF)(X) = limJ(F(−)(X)).

Corollary 447 (Dual). Let D be a category with all colimits of shape J. For any category
C, the functor category [C, D] has all colimits of shape J and the colimit of any diagram
F : J⇝ [C, D] satisfies for any X ∈ C0, (colimJF)(X) = colimJ(F(−)(X)).509 509 In other words, colimits are taken pointwise.

You can use Exercise 352 or draw a similar chain
of adjunctions as in (216).Corollary 448. If a category D is (finitely) complete or cocomplete, then so is [C, D] for

any category C.

150 ralph sarkis

SOL Exercise 449. Let C have all limits of shape J and C : L ⊣ R : D be an adjunction.
Using Theorem 430, Corollary 421, Theorem 443 and Proposition 444, show that R
preserves all limits of shape J.

8 Monads and Algebras
8.1 POV: Category Theory 151

8.2 POV: Universal Algebra 161

8.3 POV: Computer Programs 165

8.4 Exercises 169

8.1 POV: Category Theory

We will start from the concept of an adjunction which, as we hope was made clear in
the previous chapter, is ubiquitous and powerful throughout mathematics. How-
ever, we will start with a great oversimplification; we will assume the categories
concerned are posetal.

An adjunction between posets (P,≤) and (Q,⊑) is a pair of order-preserving
functions L : P → Q and R : Q → P satisfying for any p ∈ P and q ∈ Q, L(p) ⊑
q ⇐⇒ p ≤ R(q). You might recognize this as a Galois connection from Chapter 0,
this explains the notation L ⊣ R we introduced back then.

Let us derive again the properties of the composite R ◦ L using what we know
about adjoints.510 510 Recall that we showed R ◦ L was a closure op-

erator in Proposition 68.It is of course a monotone function but we can derive a couple of additional
properties. First, the existence of the unit η : idP ⇒ RL means that for any p ∈ P,
there is ηp : p → RL(p), so RL is extensive.511 Second, the existence of the counit 511 i.e.: ∀p ∈ P, p ≤ RL(p).

ε : RL ⇒ idP means that for any p ∈ P, there is R(εL(p)) : RLRL(p) → RL(p) and
RL(ηp) : RL(p)→ RLRL(p), so RL is idempotent (i.e.: ∀p ∈ P, RL(p) = RLRL(p)).
This means RL is a closure operator.

We will generalize this discussion to arbitrary categories now. Let C : L ⊣ R : D
be an adjoint pair, we have two natural transformations η : idC ⇒ RL and RεL :
RLRL ⇒ RL that interact well together due to the triangle identities. Applying
R(−) to (186) and (−)L to (187) yields two diagrams that we combine into (217).
We can add to the diagram coming from HOR(ε, ε) which act on by R(−)L to obtain
(218).

RL RLRL RL

RL

RLη

RεL
1RL

ηRL

1RL

(217)

RLRLRL RLRL

RLRL RL
RεL

RLRεL

RεLRL

RεL (218)

These diagrams are precisely what is required to define a monad.

Definition 450 (Monad). A monad is a triple comprised of an endofunctor M : C⇝
C and two natural transformations η : idC ⇒ M and µ : M2 ⇒ M called the unit
and multiplication respectively that make (219) and (220) commute in [C, C].

152 ralph sarkis

M M2 M

M

Mη

µ
1M

ηM

1M

(219)
M3 M2

M2 Mµ

Mµ

µM

µ (220)

Examples 451. Our discussion above tells us that any adjoint pair L ⊣ R corre-
sponds to a monad (RL, η, RεL), so all the examples of adjunctions you have seen
correspond to suitable examples of monads. For instance, all closure operators are
monads. Here are more examples described from adjunctions in Chapter 7.

1. The adjunction Set : (−)∗ ⊣ U : Mon yields the free monoid monad abusively
denoted (−)∗ : Set ⇝ Set sending a set A to the underlying set of the free
monoid on A. The unit sends a ∈ A to the word a ∈ A∗ by inclusion and the
multiplication sends a finite word over finite words over A to the concatenation
of the words.512 512 e.g.: it sends (aa)(ab)(bb) to aaabbb.

2. Similarly to the previous example, there is monad k[−] on Set sending A to the
underlying set of the vector space k[A].513 513 We leave you to figure out the unit and mul-

tiplication depending on your preferred way to
construct k[A] (either as polynomials over vari-
ables in A or functions from A to k).

3.

4. Both adjunctions with the forgetful functor Top ⇝ Set induce the identity
monad.

Examples 452. Here, we describe three simple yet very useful examples and let you
ponder on the adjunctions they might or might not originate from.

1. Suppose C has (binary) coproducts and a terminal object 1, then (−+ 1) : C⇝ C
is a monad.514 We write inlX+Y (resp. inrX+Y) for the coprojection of X (resp. Y) 514 It is called the maybe monad. It is a general-

ization of the maybe functor defined in Exercise
224 and you may want to generalize the adjunc-
tion described in Example 432 to this setting be-
fore going to the next section.

into X + Y.515 First, note that for a morphism f : X → Y,

515 These notations are very common in the
community of programming language research,
they stand for injection left (resp. right). We may
omit the superscript in case it is too cumber-
some.

f + 1 = [inlY+1 ◦ f , inrY+1] : X + 1→ Y + 1.

The components of the unit are given by the coprojections, i.e.: ηX = inlX+1 :
X → X + 1, and the components of the multiplication are

µX = [inlX+1, inrX+1, inrX+1] : X + 1 + 1→ X + 1.

Checking that (219) commutes, we have for any X ∈ C:

µX ◦ (ηX + 1) = [µX ◦ inl(X+1)+1 ◦ ηX , µX ◦ inr(X+1)+1]

= [[inlX+1, inrX+1] ◦ inlX+1, inrX+1]

= [inlX+1, inrX+1]

= idX+1

= [inlX+1, inrX+1]

= µX ◦ inl(X+1)+1

= µX ◦ ηX+1

my first category theory textbook 153

For (220), we have for any X ∈ C:

µX ◦ (µX + 1) = [µX ◦ inl(X+1)+1 ◦ µX , µX ◦ inr(X+1)+1]

= [[inlX+1, inrX+1] ◦ µX , inrX+1]

= [[inlX+1, inrX+1, inrX+1], inrX+1]

= [µX , inrX+1]

= [[inlX+1, inrX+1], inrX+1, inrX+1]

= [µX ◦ inl(X+1)+1, µX ◦ inr(X+1)+1, µX ◦ inr(X+1)+1]

= µX ◦ µX+1

2. The covariant powerset functor P : Set ⇝ Set is a monad with the following
unit and multiplication:

ηX : X → P(X) = x 7→ {x} and µX : P(P(X))→ P(X) = F 7→
⋃
s∈F

s.

Checking that (219) commutes, we have for any S ⊆ P(X):

µX(P(ηX)(S)) = µX ({{x} | x ∈ S})
=
⋃
x∈S
{x}

= S

=
⋃
{S}

= µX({S})
= µX(ηP(X)(S))

For (220), we have for any F ∈ P(P(P(X)):

µX(µP(X)(F)) = µX

(⋃
F∈F

F

)
=

⋃
s∈P(X)
∃F∈F ,s∈F

s

= {x ∈ X | ∃s ∈ P(X), x ∈ s and ∃F ∈ F , s ∈ F}
=

⋃
F∈F

⋃
s∈F

s

= µX

({⋃
s∈F

s | F ∈ F
})

= µX(P(µX)(F))

3. The functor D : Set→ Set sends a set X to the set of finitely supported distribu-
tions on X, i.e.:

D(X) := {φ ∈ [0, 1]X | ∑
x∈X

φ(x) = 1 and φ(x) ̸= 0 for finitely many x’s}.

154 ralph sarkis

It sends a function f : X → Y to the function between distributions

λφD(X).λyY.φ(f−1(y)).

More verbosely, the weight of D(f)(φ) at point y is equal to the total weight of
φ on the preimage of y under f . It is a monad with unit ηX = x 7→ δx, where δx

is the Dirac distribution at x (all the weight is at x), and multiplication

µX = Φ 7→ λxX . ∑
ϕ∈supp(Φ)

Φ(ϕ) · ϕ(x),

where supp(Φ) is the support of Φ, i.e.: supp(Φ) := {φ | Φ(φ) ̸= 0}.

After looking long enough for adjunctions giving rise to the monads in Examples
452, two questions dare to be asked. Does every monad arise from an adjunction in
the same way as above? If yes, is that adjunction unique?

The second question might not be as natural to novices in category theory but it
is almost as important as the first one. Indeed, uniqueness is a very strong property
and if every monad had a unique corresponding adjunction, one might expect it to
be fairly easy to find. This is part of the beauty of category theory. We are working
with very little data M, η and µ so if it completely determined an adjunction L ⊣ R
with its unit and counit and the natural isomorphism Hom(L−,−) ∼= Hom(−, R−),
it could not do so in a very convoluted way merely because there is not that many
ways to manipulate the original data.

In any case, we will respectively give a positive and negative answer to these
questions. Fortunately, while we might not benefit from the power of uniqueness,
there are two special adjunctions arising from a monad whose descriptions are
fairly straightforward. In the order we present them, the first is due to Kleisli and
the second to Eilenberg and Moore. In the rest of this section, (M, η, µ) will be a
monad on a category C.

Kleisli Category CM

An intuitive way to think about monads is through the idea of generalized ele-
ments.516 Given an object A ∈ C0, we can view MA as extending A with more 516 This is not a formal term.

general or structured elements built from A.
In this picture, the morphisms ηA : A→ MA give a way to understand anything

inside A trivially as a general element of A. The morphisms µA : M2 A → MA
imply that higher order structures can be collapsed so that generalized elements
over generalized elements of A are generalized elements of A. The functoriality of
M implies that the new structures in MA are somewhat independent of A. Indeed,
for every morphisms f : A → B, there is a morphism M f : MA → MB which, by
naturality of η (M f (ηA) = ηB(f)), acts just like f on the trivial generalization of
elements in A. Commutativity of (219) says that the trivial generalization517 of a 517 There are two ways to do it corresponding to

the L.H.S. and R.H.S. of (219).generalized element is indeed trivial, namely, after collapsing via µ, we end up with
what we started with. Finally, the associativity of µ (i.e.: commutativity of (220))

my first category theory textbook 155

corresponds to the fact that in higher order of generalizations, one can collapse the
structure at every level in any order and end up with the same thing.

Now, we can also consider generalized morphisms. Let us say we were given an
ill-defined morphism f : A→ B that sends some of the stuff in A outside of B. One
way to fix this might be to consider general elements of B and see f as a morphism
A → MB. We will call such morphisms Kleisli morphisms and write f : A ↛ B
for f : A→ MB.518 518 Another common notation for Kleisli mor-

phisms is f : A ⇝ B but this clashes with our
notation for functors.

With an arbitrary functor F, you might have a hard time to come up with a way
to compose two Kleisli morphisms A→ FB and B→ FC or even define the identity
Kleisli morphism A → FA, but the data of a monad lets you do just that. Indeed,
given f : A ↛ B and g : B ↛ C, while g is not composable with f , Mg is so we
have Mg ◦ f : A → MMC and it suffices to apply the multiplication µC to obtain
µC ◦ Mg ◦ f : A ↛ C. We denote g ◦M f := µC ◦ Mg ◦ f and call it the Kleisli
composition. Also, for any A ∈ C0, the component of the unit at A yields a Kleisli
morphism ηA : A ↛ A. Let us check that ◦M is associative and that ηA behaves like
the identity with respect to ◦M.

Let f : A ↛ B, g : B ↛ C and h : C ↛ D be Kleisli morphisms, the compositions
h ◦M (g ◦M f) and (h ◦M g) ◦M f are respectively the bottom and top path of the
following commutative diagram, so we conclude that ◦M is associative.

Showing (221) commutes:

(a) Trivial.

(b) NAT(µ, C, MD, h).

(c) Components of (220) at D.

A MB

MB MMC

MMC MMMD

MMD

MC MMD MD

f

Mg

µC

Mh µD

f

Mg

MMh

MµD

µD

M(h◦M g)

g◦M f

µMD

MMh

(a)

(b)

(c)

(221)

We show that ηB ◦M f = f and f ◦M ηA = f with the following derivations.

ηB ◦M f = µB ◦MηB ◦ f

by L.H.S. of (219) = idMB ◦ f

= f

f ◦M ηA = µB ◦M f ◦ ηA

by NAT(η, A, MB, f) = µB ◦ ηMB ◦ f

by R.H.S. of (219) = idMB ◦ f

= f
This leads to the definition of the category CM.519 519 Notice that we had to use all the data from

the monad: the naturality of η and µ, the com-
mutativity of both diagrams (219) and (220) as
well as functoriality of M (the latter was used
implicitly).

Definition 453 (CM). Let C be a category and (M, η, µ) a monad on C. The Kleisli
category of M, denoted CM

520, has the same objects as C and the morphisms in
520 Some authors denote it Kl(M).HomCM (A, B) are the elements of HomC(A, MB). The identity for A ∈ C0 is ηA :

A→ MA and composition is ◦M.

Examples 454. We describe the Kleisli category for the monads in Examples 452.

156 ralph sarkis

1. By identifying a Kleisli morphism f : A ↛ B with a partial function A ⇀ B as
we did in Example 379.3, we can show that Set−+1 ∼= Par.

2. In SetP , objects are sets and morphisms are functions r : X → P(Y). Viewing
the latter as a relation R ⊆ X×Y defined by (x, y) ∈ R⇔ y ∈ r(x), we can verify
that composition of relations corresponds to Kleisli composition in SetP .521 521 Composition of relations was defined in Ex-

ample 115.
Let r : X → P(Y) and s : Y → P(Z) be Kleisli morphisms, R, S and SR be the
relations corresponding to r, s and s ◦P r. We need to show SR = S ◦ R. Fix
x ∈ X, we have

(s ◦P r)(x) = (µPZ ◦ P(s) ◦ r)(x) =
⋃
P(s)(r(x)) = {z ∈ Z | ∃y ∈ r(x), z ∈ s(y)} .

Since y ∈ r(x)⇔ (x, y) ∈ R and z ∈ s(y)⇔ (y, z) ∈ S, we conclude that

(x, z) ∈ SR⇔ z ∈ (s ◦P r)(x)⇔ (x, z) ∈ S ◦ R.

After a bit more administrative arguments, one finds that SetP ∼= Rel.

3.

Since we can view any object of C as an object of CM, we may wonder if we can
do the same with morphisms to obtain a functor C⇝ CM. The key idea is to view
f : A→ B as a generalized morphism by trivially generalizing its target, that is, by
post-composing with ηB. We claim that FM : C ⇝ CM acting as identity on objects
and post-composing by components of η on morphisms is a functor.522 Indeed, 522 Explicitly, for any A ∈ C0, FM(A) = A and

for any f : A→ B, FM(f) = ηB ◦ f .FM(idA) = ηA is the identity on A in CM and

FM(g ◦ f) = ηC ◦ g ◦ f

= Mg ◦ ηB ◦ f NAT(η, B, C, g)

= Mg ◦ µB ◦M(ηB) ◦ ηB ◦ f by (219)

= µC ◦MMg ◦M(ηB) ◦ ηB ◦ f NAT(µ, B, C, g)

= µC ◦M(ηC) ◦Mg ◦ ηB ◦ f MNAT(η, B, C, g)

= FM(g) ◦M FM(f). def. of ◦M

We will now construct a right adjoint UM : CM ⇝ C to FM. Given A and
B objects of both C and CM, the Kleisli morphisms from FM A to B are precisely
the morphisms in C from A to MB, thus we infer that the identity function is
an isomorphism HomCM (FM A, B) ∼= HomC(A, MB). This implies UM sends B
to MB and we can define UM on morphisms by imposing the naturality of the
aforementioned isomorphism. Given g : A ↛ B, starting with ηA on the top left of
(222), we find that UMg ◦ ηA = g which implies UMg = µB ◦Mg.523 523 This implication is subtle. While it is true

that we do not yet know if another f satisfies
f ◦ ηA = g. Once we know (in a few moments)
defining UM g = µB ◦ Mg yields an adjunction
FM ⊣ UM whose unit is η, we know that ηA is
universal and uniqueness of UM g follows.

HomCM (A, A) HomC(A, MA)

HomCM (A, B) HomC(A, MB)

id

g◦M(−) UM g◦(−)

id

(222)

my first category theory textbook 157

As a sanity check (and for a bit of practice), let us verify UM is a functor. For any
A ∈ CM0, UM(ηA) = µA ◦M(ηA) = idA by the L.H.S. of (219) and for any for any
f : A ↛ B and g : B ↛ C,

UM(g ◦M f) = UM(µC ◦Mg ◦ f)

= µC ◦M(µC ◦Mg ◦ f)

= µC ◦M(µC) ◦MMg ◦M f

= µC ◦ µMC ◦MMg ◦M f by (220)

= µC ◦Mg ◦ µB ◦M f by naturality of µ

= UM(g) ◦UM(f).

Let us now verify that FM ⊣ UM. Let A, B ∈ C0 (we view B as an object of
CM), we saw that the identity function is an isomorphism HomCM (FM A, B) ∼=
HomC(A, UMB) and we now check it is natural. We need to show (223) com-

mutes for any f : A′ → A and g : B ↛ B′. It follows from this derivation starting
with k : A ↛ B in the top left.

g ◦M k ◦M FM f = µB′ ◦M(g) ◦ µB ◦M(k) ◦ ηA ◦ f

= µB′ ◦M(g) ◦ µB ◦ ηMB ◦ k ◦ f by naturality of η

= µB′ ◦M(g) ◦ idMB ◦ k ◦ f by (219)

= µB′ ◦M(g) ◦ k ◦ f

= UMg ◦ k ◦ f

HomCM (A, B) HomC(A, MB)

HomCM (A′, B′) HomC(A′, MB′)

id

g◦(−)◦M FM f UM g◦(−)◦ f

id
(223)

Finally, in order to achieve our initial goal of finding an adjunction that induces
the original monad, we need to make sure the monad arising from FM ⊣ UM is
(M, η, µ). First, we check that UMFM = M. On objects, it is clear. On a morphism
f : A→ B, we have

UM(FM(f)) = UM(ηB ◦ f) = µB ◦M(ηB) ◦M f
(219)
= M f .

Next, as ηA is the image of the identity on A in CM under the natural isomor-
phismcomponent, the unit of the adjunction is the unit of the monad. The counit
of the adjunction at A is εA = idMA, thus (UMεFM)A = UM(idFM A) = µA ◦
M(idMA) = µA.

Recall that we claimed FM ⊣ UM was special in some way and that this was the
(informal) reason why it was relatively easy to find, the next proposition will make
this precise.

Definition 455 (AdjM). Let C be a category and (M, η, µ) a monad on C. The
category of adjunctions inducing M is denoted AdjM. Its objects are adjoint pairs
L ⊣ R with unit η and counit ε sastisfying R ◦ L = M RεL = µ. Its morphisms
L ⊣ R→ L′ ⊣ R′) are functors K satisfying K ◦ L = L′ and R′ ◦ K = R as in (224).

D D′

C

K

L

L′R

R′

⊣ ⊣ (224)

158 ralph sarkis

We can restate the end result of the discussion above as FM ⊣ UM being an object
of AdjM. It is special because it is initial.

Proposition 456. The adjunction FM ⊣ UM is initial in AdjM.

Proof. Let C : L ⊣ R : D ∈ AdjM with unit η and counit ε, we claim there is a unique
functor K : CM ⇝ D satisfying K ◦ FM = L and R ◦ K = UM as in (225).

CM D

C

K

FM

LUM

R

⊣ ⊣ (225)

On objects, K is determined by KA = KFM A = LA. To a morphism f : A ↛ B,
we need to assign a morphism in K f ∈ HomD(LA, LB) such that RK f = UM f =

µB ◦M f = RεLB ◦ RL f . It is clear that K f = εLB ◦ L f is a candidate but to show it
is unique, we consider the following naturality square coming from the adjunction
L ⊣ R.

HomD(LA, LA) HomC(A, RLA)

HomD(LA, LB) HomC(A, RLB)

R−◦ηA

εLB◦L−

K f ◦(−) RK f ◦(−) (226)

Starting with idLA in the top left and reaching the bottom left, we find

K f = εLB ◦ LRK f ◦ LηA

= εLB ◦ LRεLB ◦ LRL f ◦ LηA hypothesis on RK f

= εLB ◦ LRεLB ◦ LηRLB ◦ L f NAT(η, A, RLB, f)

= εLB ◦ εLRLB ◦ LηRLB ◦ L f HOR(ε, ε)L

= εLB ◦ εLMB ◦ LηMB ◦ L f RL = M

= εLB ◦ idMB ◦ L f triangle identity

= εLB ◦ L f

To finish the proof, let us verify K is functorial.

K(uCM (A)) = K(ηA) = εLB ◦ L(ηA)
(186)
= idA

K(g ◦M f) = K(µC ◦ RLg ◦ f)

= εLC ◦ L(µC) ◦ LRLg ◦ L f

= εLC ◦ LRεLC ◦ LRLg ◦ L f by hypothesis on ε

= εLC ◦ εLRLC ◦ LRLg ◦ L f HOR(ε, ε)L

= εLC ◦ Lg ◦ εLB ◦ L f NAT(ε, LB, LRLC, Lg)

= Kg ◦ K f

SOL Exercise 457. Let K : L ⊣ R → L′ ⊣ R′ be a morphism in AdjM, ε and ε′ be the
counits of the source and target respectively. Show that Kε = ε′K.

my first category theory textbook 159

Eilenberg–Moore Category CM

For the second solution to the problem of finding an adjunction inducing a given
monad, we look at the more structural side of monads.

Definition 458 (M–algebra). Let (M, η, µ) be a monad, an Eilenberg–Moore alge-
bra for M or simply M–algebra is a pair (A, α) consisting of an object A ∈ C0 and
a morphism α : MA→ A such that (227) and (228) commute.

A MA

A
idA

ηA

α (227)
M2 A MA

MA A

Mα

µA

α

α

(228) We

will often denote an M–algebra using only its underlying object or its underlying
morphism.

Definition 459 (Homomorphism). Let (M, η, µ) be a monad and (A, α) and (B, β)

be two M–algebras. An M–algebra homomorphism or simply M–homomorphism
from (A, α) to (B, β) is a morphism h : A→ B making (229) commute.

MA MB

A B

α

Mh

β

h

(229)

After checking that the composition of two M–homomorphisms is an M–homomorphism
and idA is an M–homomorphism from (A, α) to itself whenever α is an M–algebra,
we get a category of M–algebras and M–homomorphism called the Eilenberg–
Moore category of M and denoted CM.

Since CM was built from objects and morphisms in C, there is an obvious for-
getful functor UM : CM ⇝ C sending an M–algebra (A, α) to its underlying object
A and an M–homomorphism to its underlying morphism. We will now find a left
adjoint FM : C ⇝ CM to UM. Since we want this adjunction to induce the monad
M, we require that UMFM = M. It means FM must send A ∈ C0 to an M–algebra
on MA and h ∈ C1 to Mh. There is straightforward choice given to us by the data
of M, that is, FM A = (MA, µA : MMA → MA) and it turns out naturality of µ

yields commutativity of

M2 A M2B

MA MB

µA

M2h

µB

Mh

, (230)

which implies Mh is indeed an M–homomorphism. Because M is a functor, we
immediately obtain that FM is a functor. We now show that FM ⊣ UM with unit η

and counit ε satisfying UMεFM = µ.
Let us define the counit and verify the triangle identities. For an M–algebra

α : MA → A, we want an M–homomorphism εα : FMUM A = (MA, µA) → (A, α).
Again, we have a straightforward choice since α, being an M–algebra, satisfies α ◦

160 ralph sarkis

µA = α ◦Mα, hence we can set εα = α. The following derivations show the triangle
identities hold.

εFM A ◦ FMηA = εµA ◦MηA = µA ◦MηA = idMA = idFM A

UMεα ◦ ηUM(A,α) = α ◦ ηA = idA = idUM(A,α)

Lastly, we verify
UM(εFM A) = UM(εµA) = UM(µA) = µA,

and we conclude FM ⊣ UM is an object of AdjM.
Dually to Proposition 456, we show that this adjunction is special in a precise

way.

Proposition 460. The adjunction (FM, UM) is terminal in AdjM.

Proof. Let C : L ⊣ R : D ∈ AdjM with unit η and counit ε, we claim there is a unique
functor K : D⇝ CM satisfying K ◦ L = FM and UM ◦ K = R as in (231).

D CM

C

K

L

FMR

UM

⊣ ⊣ (231)

As before, we can determine K by the equation UMK = R which means it sends
A ∈ D0 to an M–algebra on RA and f : A → B ∈ D1 to an M–homomorphism
R f : KA → KB. The only missing piece of this puzzle is the algebra structure
on KA. We have two clues. First, R f is an M–homomorphism, i.e.: denoting
KA = (RA, αA) and KB = (RB, αB), we must ensure (232) commutes. Second,
(KA, αA) is an M–algebra, so (233) and (234) commute.

MRA MRB

RA RB

MR f

αBαA

R f

(232)

RA MRA

RA

ηRA

αA
idRA

(233)

MMRA MRA

MRA RAαA

αAMαA

µA

(234)
Replacing M with RL, we recognize the first diagram as a naturality square showing
α is a natural transformation RLR⇒ R and the two other diagrams yield

α · ηR = 1R and α · RLα = α · µ.

Moreover, we can see that αA = RεA makes (233) commute by a triangle identity.
This candidate also makes (232) commute because RεA is a natural transformation
and (234) commute because

RεA ◦ µA = RεA ◦ RεLA RεL = µ

= R(εA ◦ εLA) functoriality of R

= R(εA ◦ LR(εA)) HOR(ε, ε)

= RεA ◦MRεA RL = M.

my first category theory textbook 161

To verify uniqueness, recall that the counit of the adjunction FM ⊣ UM sends an
M–algebra (X, x) to the M–homomorphism x : (MX, µX)→ (X, x). Thus, αA is the
result of applying the counit to KA and by Exercise ??, we have αA = KεA = RεA.
As K acts like R on morphisms, it is obviously functorial.

The following picture summarizes the last two sections.

D

CM C CM
UM

R

FM

L

FM UM

⊣⊣
⊣ (235)

With the following two results, one can see the Kleisli category inside the Eilenberg–
Moore category as the full subcategory of free algebras.

SOL Exercise 461. Show that the unique morphism FM ⊣ UM → FM ⊣ UM is the functor
CM ⇝ CM sending A ∈ C0 to (MA, µA) and f : A ↛ B to µB ◦M f .

Proposition 462. The functor CM ⇝ CM of Exercise 461 is fully faithful.

Proof. Full: Suppose g : MA→ MB is such that g ◦ µA = µB ◦Mg, then

µB ◦M(g ◦ ηA) = µB ◦Mg ◦MηA = g ◦ µA ◦MηA = g,

so g is the image of g ◦ ηA in CM.
Faithful: Suppose µB ◦Mg = µB ◦M f , then pre-composing with ηA, we find that

f = f ◦M ηA = g ◦M ηA = g.

8.2 POV: Universal Algebra

In this section, we will highlight the link between algebraic structures as you have
encountered them in other classes with the Eilenberg–Moore algebras discussed
above. We will only work over the category Set.524 We start by developing an 524 The ideas of universal algebra have be devel-

oped in other settings like enriched categories.example.

Example 463 (Pne). Consider the non-empty finite powerset functor Pne sending
X to {S ∈ P(X) | S is finite and non-empty}. The same unit and multiplication as
defined for P make Pne into a monad.525A Pne–algebra is a function α : Pne(A)→ A 525 It is easy to see as the η and µ restrict to finite

and non-empty.satisfying the equations α{a} = a and α(Pne(α)(S)) = α(
⋃

S). From this, we can
extract a binary operation ⊕α : A × A → A by defining x ⊕α y = α{x, y}. This
operation is clearly commutative and idempotent,526 but it is also associative by the 526 i.e.: x⊕α y = y⊕α y and x⊕α x = x.

following derivation.

(x⊕α y)⊕α z = α{x, y} ⊕α z

= α{α{x, y}, z}
= α{α{x, y}, α{z}}

162 ralph sarkis

= α{Pneα{{x, y}, {z}}}
= α{µA{{x, y}, {z}}}
= α{x, y, z}.

Since a Pne–homomorphism h : (A, α) → (B, β) commutes with α and β it also
commutes with ⊕α and ⊕β.527 527 i.e.: h(a⊕α a′) = h(a)⊕β h(a′).

Conversely, if ⊕ is an idempotent, associative and commutative binary operation
on A, we can define α⊕ on non-empty finite sets of A by iterating ⊕. Namely,

α⊕{x} = x⊕ x and α⊕{x1, . . . , xn} = x1 ⊕ x2 ⊕ · · · ⊕ xn.

It is well-defined by associativity and commutativity and we can check that it is the
inverse of the operation described in the previous paragraph. That is to say, we can
check that α⊕α = α and ⊕α⊕ = ⊕. For the former, it is clear for singleton sets and
for any n > 1, we have the following derivation.

α⊕α{x1, . . . , xn} = x1 ⊕α · · · ⊕α xn

= α{x1, x2 ⊕α · · · ⊕α xn}

=
...

= α{x1, α{x2, α{· · · , α{xn}}}}
using α ◦ Pne(α) = α ◦ µA = α{x1, x2, α{· · · , α{xn}}}

=
...

= α{x1, . . . , xn}

For the latter, we have
x⊕α⊕ y = α⊕{x, y} = x⊕ y.

A set equipped with an idempotent, commutative and associative binary oper-
ation is called a semilattice528 and we have shown above that Pne–algebras are in 528 A semilattice can also be called a sup-

semilattice, join-semilattice, inf-semilattice or
meet-semilattice. This is because a semilattice
can also be defined as a poset where all supre-
mums/joins (resp. , infimums/meets) exist.

correspondence with semilattices. Through the introduction of basic notions in uni-
versal algebra, we will explain how this correspondence is functorial and generalize
the core idea behind it.

Definition 464 (Algebraic theory). An algebraic signature529 is a set Σ of operation
529 Also called algebraic similarity type.

symbols along with arities in N, we denote f : n ∈ Σ for an n–ary operation symbol
f in Σ. Given a set X, one constructs the set of Σ–terms with variables in X, denoted
TΣ(X) by iterating operations symbols:

∀x ∈ X, x ∈ TΣ(X)

∀t1, . . . , tn ∈ TΣ(X), f : n ∈ Σ, f (t1, . . . , tn) ∈ TΣ(X).

An equation530 E over Σ is a pair of Σ–terms over a set of dummy variables which 530 Also called axiom.

we usually denote with an equality sign (e.g.: s = t for s, t ∈ TΣ(X) and X is the set
of dummy variables). We will call the tuple (Σ, E) an algebraic theory.

my first category theory textbook 163

Example 465. The algebraic theory of semilattices contains a single binary operation
ΣS = {⊕ : 2} and the following equations in ES:531 531 It will be made clear why this is the theory of

semilattices shortly.

x⊕ x = x I: idempotence

x⊕ y = y⊕ x C: commutativity

(x⊕ y)⊕ z = x⊕ (y⊕ z). A: associativity

Let X = {x, y, z}, the set of Σ–terms contains infinitely many terms, e.g.: x ⊕ y,
x⊕ (y⊕ z), (x⊕ x)⊕ (y⊕ z)⊕ (z⊕ x), etc.532 532 The parentheses are here to denote the order

in which the operation symbols was applied.
While in semilattices, the operation ⊕ satisfies
the equations making the parentheses and or-
der irrelevant, when describing terms over the
signature, we cannot remove them.

Definition 466 ((Σ, E)–algebras). Given an algebraic theory (Σ, E), a (Σ, E)–algebra
is a set A along with operations f A : An → A for all f : n ∈ Σ such that the pairs of
terms in E are always equal when the operation symbols and dummy variables are
instantiated in A.533 We usually denote ΣA for the set operations f A. 533 The operation symbol f is always instantiated

by f A and a dummy variable can be instanti-
ated by any element of A. For instance, suppose
(A, f A, gA) is a (Σ, E)–algebra and f (x, g(y)) =
g(y) is an equation in E, then for any a, b ∈ A,
f A(a, gA(b)) = gA(b).

Examples 467. As is suggested by the terminology, the common algebraic structures
can be defined with simple algebraic theories.

1. We can define a monoid as an algebra for the signature {· : 2, 1 : 0} and the
equations x · (y · z) = (x · y) · z, 1 · x = x, x · 1 = x. We will say that this is the
algebraic theory of monoids.

2. Adding the unary operation (−)−1 and the equations x · x−1 = 1 and x−1 · x = 1,
we obtain the theory of groups.

3. Adding the equation x · y = y · x yields the theory of abelian groups.

4. With the signature {+ : 2, · : 2, 1 : 0, 0 : 0}, we can add the abelian group
equations for the operation + (identity is 0), the monoid equations for · (identity
is 1) and the distributivity equation x · (y + z) = (x · y) + (x · z) and thus obtain
the theory of rings.

5. The theory of semilattices has this named because a (ΣS, ES)–algebra is a semi-
lattice.

We also have homomorphisms between (Σ, E)–algebras.

Definition 468 ((Σ, E)–algebra homomorphisms). Given two (Σ, E)–algebras A and
B, a homomorphism between them is a map h : A→ B commuting with all opera-
tions in Σ, that is ∀ f : n ∈ Σ, h ◦ f A = f B ◦ hn.534 534 We write hn for componentwise applica-

tion of the map h to vectors in An, i.e.:
hn(a1, . . . , an) = (h(a1), . . . , h(an)).The category of (Σ, E)–algebras and their homomorphisms (with the obvious

composition and identities) is denoted Alg(Σ, E).

Example 469 (ΣS, ES). Recall from Example 463 that Pne–algebras correspond to
semilattices. Up to a couple of missing functoriality arguments, we have shown
that the categories SetPne and Alg(ΣS, ES) are isomorphic. We say that (ΣS, ES)

is an algebraic presentation of the monad Pne or that the theory of semilattices
presents the monad Pne.

164 ralph sarkis

It turns out all algebraic theories present at least one monad.

Definition 470 (Term monad). Let (Σ, E) be an algebraic theory, one can assign to
any set X, the set TΣ,E(X) of terms in TΣ(X) modulo the equations in E.535This can 535 Let us not waste time here to make this more

formal as there is a lot to say that is not relevant
to the rest of this story. We say that two terms
s and t are equal modulo E if we can rewrite
s using the equations in E and obtain t. The
informal notion of rewriting is good enough for
us (we hope you got a sense of what rewriting
means when learning about high school alge-
bra).

be extended to functions f : X → Y, by variable substitution, i.e.: TΣ(f) acts on
a term t by replacing all occurrences of x ∈ X with f (x) ∈ Y and TΣ,E(f) acts on
equivalence classes by [t] 7→ [TΣ(f)(t)]. We obtain a functor TΣ,E on which we can
put a monad structure.

The unit is obvious because any element of X is a Σ–term, thus ηX : X → TΣ,E(X)

maps x to the equivalence class containing the term x. The multiplication is derived
from the fact that applying operations in Σ to Σ–terms yields Σ–terms. More ex-
plicitly, µX is a flattening operation defined recursively by

∀t ∈ TΣ(X),µX([[t]]) = [t]

∀ f : n ∈ Σ, t1, . . . , tn ∈ TΣTΣ,E(X),µX([f (t1, . . . , tn)]) = [f (µX([t1]), . . . , µX([tn]))]

One can show that SetTΣ,E is the category of (Σ, E)–algebras.

Unfortunately, the term monads are not very simple to work with536 and it is 536 In fact, you might have realized we chose to
not even bother.often desirable to find other simpler monads which are presented by the same

theory or conversely to find an algebraic presentation for a given monad.

Examples 471. 1. The algebraic theory presenting D is called the theory of convex
algebras and is denoted (ΣCA, ECA), it consists of a binary operation +p : 2 for
any p ∈ (0, 1) which is meant to represent a choice between the two terms in the
operation, the left one being chosen with probability p and the second one with
probability 1− p. There are three equations in the theory that morally ensure
that terms representing the same probabilistic choice are equal.537 537 For x ∈ [0, 1], we denote x := 1− x.

x +p x = x Ip: idempotence

x +p y = y +p x CP: skew-commutativity

(x +q y) +p z = x +pq (y + pq
pq

z) Ap: skew-associativity

These equations are necessary for every distribution inDX to correspond uniquely
to an equivalence class in TΣCA,ECA

(X).

2. The monad (−+ 1) is particular because it is really simple and combines very
well with other monads.

Proposition 472. For any monad M, there is a monad structure on the composition
M(−+ 1). Moreover, if M is presented by (Σ, E) the monad M(−+ 1) is presented
by (Σ ∪ {∗ : 0}, E), that is, the new theory only has an additional constant538 which is 538 A 0–ary opeartion is more commonly called a

constant.neutral with respect to the operation symbols.

Proof. Postponed to Exercise 478.

We often qualify theories with an added constant as pointed. For instance, the
theories presented by Pne(−+ 1) and D(−+ 1) are those of pointed semilattices
and pointed convex algebras respectively.

my first category theory textbook 165

Remark 473 (Lawvere’s way). There is another way to do universal algebra more
categorically still very much linked to monads: Lawvere theories. Algebras over a
Lawvere theory539 are defined more abstractly using the categorical language and, 539 They are called models of the theory.

on this account, they enjoy straightforward generalization through enrichment or
lifting to higher order categories.

8.3 POV: Computer Programs

In this section, we will develop on an original idea by Eugenio Moggi that monads
are suitable models for a general notion of computation. In the sequel, we will use
the terms type and set interchangeably.

Moggi gave a justification for using monads in computer science (particularly
in programming semantics) via the informal intuition of computational types. For a
type A, the computational type of A should contain all computations which return
a value of type A. It is intended for the interpretation of computation to be made
explicit by an instance of a monad. In most cases, it can be thought of as a piece of
code which returns some value, but for now, we start by building the intuition in
an abstract sense.

Let MA denote the computational type of A and MMA the computational type
of MA, that is computations returning values which are themselves computations
of type A. The following items should coincide with our intuition of computation.

1. For any x ∈ A, there is a trivial computation return x ∈ MA.

2. For any C ∈ MMA, we can reduce C to flatten(C) ∈ MA which executes C and
the computation returned by C to obtain a final return value of type A.

3. If C ∈ MA, then flatten(return C) = C.

4. If C ∈ MA and C′ ∈ MMA does the same computation as C but instead of
returning a value x, it returns the computation return x, then flatten(C′) = C.

5. If MMMA is the computational type of MMA and C ∈ MMMA, then there are
two ways to flatten C. First, there is the computation C1 which executes C and
executes the returned computation (of type MMA) to obtain a final value of type
MA, hence C1 ∈ MMA and flatten(C1) ∈ MA. Second, C2 executes C and flattens
the returned computation to obtain a final value of type MA, C2 is also of type
MMA and flatten(C2) ∈ MA. These two operations should yield the same result.

Now, a monad M is a description of computational types that is general, namely,
for any type A, the monad M gives a type MA behaving as expected. You can check
that x 7→ return x is the unit of this monad and flatten is the multiplication.

Examples 474. Here, we list more examples commonly used in computer science.
List monad: For any set X, let L(X) denote the set of all finite lists whose el-

ements are chosen in X. This is a functor that sends a function f : X → Y to its
extension on lists L(f) : L(X)→ L(Y) which applies f to all elements on the list (in

https://en.wikipedia.org/wiki/Lawvere_theory

166 ralph sarkis

lots of programming languages, one writes L(f) := map(f ,−)).Then, we can put a
monad structure on L. The unit maps send an element x ∈ X to the list containing
only that element: ηX = x 7→ [x]. The multiplication maps concatenate all the lists
in a lists of lists: µX = [ℓ1, . . . , ℓn] 7→ ℓ1ℓ2 · · · ℓn. It is easy to check diagrams (219)
to (220) commute.

Termination: In order to model computations that might terminate with no out-
put, the monad (−+ 1) is often used. For any type X, the type X + 1 has all the
values of type X and an additional termination value denoted ∗. The behavior of
the unit and multiplication of the monad can be interpreted as the fact that the
stage of the computation that leads to a termination is irrelevant. This monad is
also known as the Maybe monad.

Non-deterministic choice: The model for nondeterministic choice is given by
the monad Pne. The elements of S ∈ Pne(X) are seen as the possible outcomes of
a nondeterministic choice. The unit is basically viewing a deterministic choice as a
nondeterministic choice. The multiplication reduces the number of choices without
changing the behavior. For instance, consider a process that nondeterministically
chooses between two boxes containing two coins each and then chooses a coin in
the box. By simply observing the final choice, we would not be able to distinguish
it from a process that nondeterministically chooses between the four coins from the
start.

Probabilistic choice: In the same vein, probabilistic choice can be interpreted
with the monad D of finitely supported distributions.

Exceptions: As a generalization of termination, we can put a monad structure
on the functor (·+ E) where E is a set of exceptions that the computation can raise.

This view sheds light on one important features of monads we have not yet
explored. If M and M̂ are monads describing computational effects, it is natural
to ask for a way to combine them. Indeed, it does not seem too ambitious to have
a model for programs which, for instance, make nondeterministic choices and also
might terminate with no output. It turns out there is a very useful tool to deal with
this at the level of monads.

Definition 475 (Monad distributive law). Let (M, η, µ) and (M̂, η̂, µ̂) be two monads
on C, a natural transformation λ : MM̂ ⇒ M̂M is called a monad distributive law
of M over M̂ if it makes (236), (237) commute.

M MM̂ M̂

M̂M
η̂M

Mη̂

λ

ηM̂

M̂η

(236)

MMM̂ MM̂ MM̂M̂

MM̂M M̂MM M̂M M̂M̂M M̂MM̂

Mλ

µM̂

λ λM̂

Mµ̂

λM M̂µ µ̂M M̂λ

(237)

my first category theory textbook 167

Proposition 476. If λ : MM̂ ⇒ M̂M is a monad distributive law, then the composite
M = M̂M is a monad with unit η = η̂ ⋄ η and multiplication µ = (µ̂ ⋄ µ) · M̂λM.

Proof. We have to show that the following instances of (219) and (220) commute.

M M2 M

M̂2M2

M

1M

M(η̂⋄η)

M̂λM

1M

(η̂⋄η)M

µ̂⋄µ

(238)

M3 MM̂2M2 M2

M̂2M2M M̂2M2

M2 M̂2M2 M

M̂λMM

MM̂λM M(µ̂⋄µ)

M̂λM

(µ̂⋄µ)M µ̂⋄µ

M̂λM µ̂⋄µ
(239)

For the left part of (238), we have the following paving, the justifications of each
part is given in the margin (the notation (219).L (resp. .R) means only the left (resp.
right) part of the diagram is considered).

Showing (240) commutes:

(a) Definition of ⋄ and functoriality of M.

(b) M̂1M M̂ is the identity transformation.

(c) Act on (219).L with M̂ on the left and right.

(d) Act on (236).R with M on the left.

(e) Act on (237).L with M̂ on the left.

(f) Act on (236).L with M̂ on the left.

(g) Act on (219) with M on the right.

(h) Definition of ⋄.

M MM̂ M2

MMM̂

MM̂ M̂2M2

M̂2M M̂2M

M M

Mη̂ MM̂η

MηM̂ Mλ

M̂λM

M̂2µ

µ̂M

M̂1M M̂

M̂µM̂

Mη̂

µ̂⋄µ

M̂λ

M(η̂⋄η)

M̂η̂M

1M=1M̂ M

(b)
(c)

(d)

(e)

(h)

(a)

(g)

(f)
(240)

For the right part of (238), we have the following paving.

Showing (241) commutes:

(a)

M2 MM M

MM̂M

M̂2M2 MM

M̂M2 M̂M2

M M

M̂λM

µ̂⋄µ

(η̂⋄η)M

ηMη̂MM

µ̂M2

M̂µ

λM

λM

Mµ̂M

Mη̂M

M1M̂ M ηM

M̂ηM

M̂1M=1M

(a)

(b)
(c)

(d)

(e)

(f)

(g)(h)

(241)

168 ralph sarkis

For (239), we do the same thing.

M3 MM̂2M2 MM̂2M M2

M̂2M2M M̂2MM̂M2 M̂2MM

MM̂M2 M̂3M3 M̂3M2 M̂2M2

M̂M2M M̂2M3 M̂2M2 M̂M2

M̂3M2 M̂3M

M2 M̂2M2 M̂2M M

M̂λMM

MM̂λM

(a)

M(µ̂⋄µ)

MM̂2µ

M̂λM̂M2 (b)

Mµ̂M

M̂λM̂M

(c) M̂λM

(µ̂⋄µ)M

µ̂M2 M

M̂2 MλM

(d)

M̂2 MM̂µ

M̂2λM2µ̂MM̂M2

(e)
(f) M̂2λM

M̂λM2

M̂3 Mµ

M̂3µM

µ̂M̂M3

(i)

(j)

M̂µ̂M2

µ̂M̂M2

M̂3µ

(g)

(k)

µ̂M2

µ̂⋄µ
M̂µM

M̂MλM

(h) M̂2µM

µ̂M2

M̂2µ (m) M̂µ
M̂3µ

µ̂M̂M2

(l)
µ̂M̂M

M̂λM M̂2µ

µ̂⋄µ

µ̂M

(a) Def of M̂λ ⋄ λM.

(b) Def of M̂λM̂ ⋄ µ.

(c) Apply M̂(·)M to (237).R.

(d) Def of µ̂ ⋄MλM.

(e) Def of µ̂ ⋄ λM2.

(f) Def of M̂2λ ⋄ µ.

(g) Apply (·)M2 to associativity of µ̂

(220).

(h) Apply M̂(·)M to (237).L.

(i) Def of µ̂M̂ ⋄ µM.

(j) Apply M̂3 to associativity of µ (220).

(k) Def of µ̂M̂ ⋄ µ.

(l) Same as (k): Def of µ̂M̂ ⋄ µ.

(m) Def of µ̂ ⋄ µ.

Corollary 477. If C has (binary) coproducts and a terminal object 1 and M is a monad,
then M(−+ 1) is also monad.

Proof. We will exhibit a monad distributive law of M over (−+ 1). We claim

ιX : MX + 1→ M(X + 1) = [M(inlX+1), ηX+1 ◦ inrX+1]

is a monad distributive law ι : (−+ 1)M⇒ M(−+ 1). Then, it follows by Proposi-
tion 476.

SOL Exercise 478. Show Proposition 472 with the monad structure on M(−+ 1) given
in Corollary 477.

Example 479 (Rings). Consider the term monads for the theory of monoids and
abelian groups TMon and TAb. You can check that they are the monads induced by

my first category theory textbook 169

the free-forgetful adjunctions between Mon and Set and Ab and Set. Also, TMon

is the same thing as the list monad. Call the binary operation of TMon and TAb the
product and sum respectively.

Then, by identifying products of sums (elements of TMonTAbX) with sums of
products (elements of TAbTMonX) by distributing the product over the sum as we
are used to do with, say, real numbers, we obtain a monad distributive law of TMon

over TAb. The resulting composite monad TAbTMon is the term monad for the
theory of rings. The term distributive law comes from this example.

Remark 480. It is not always possible to combine monads in such a natural way. For
instance, it was shown that no distributive law exist between Pne and D and even
that no monad structure can exist on PneD or DPne. Thus, modelling combined
probabilistic and nondeterministic effects has been quite a hard endeavor and is
still an active area of research I discovered in an internship with Matteo Mio and
Valeria Vignudelli at ENS de Lyon last summer.

If you are looking for more applications of this perspective on monads and espe-
cially if you enjoyed the assignment on Brzozowski’s algorithm, I suggest you look
into the paper Generalizing Determinization From Automata to Coalgebras available at
https://arxiv.org/abs/1302.1046.

8.4 Exercises

1. Show that the triple (D, η, µ) described in Example 452.3 is a monad.

2. Show that the Kleisli category of the powerset monad is the category Rel of
relations.

3. Show that ι defined in the proof of Corollary 477 is a monad distributive law.

4. Show Proposition 472 with the monad structure on M(−+ 1) given in Corollary
477.

https://arxiv.org/abs/1302.1046

9 Solutions to Exercises
9.1 Solutions to Chapter 1 171

9.2 Solutions to Chapter 2 172

9.3 Solutions to Chapter 3 174

9.4 Solutions to Chapter 4 177

9.5 Solutions to Chapter 5 179

9.6 Solutions to Chapter 6 181

9.7 Solutions to Chapter 7 181

9.8 Solutions to Chapter 8 182

9.1 Solutions to Chapter 1

Solution to Exercise 110. Take any monoid M with an idempotent element x ̸= 1M

(it satisfies x · x = x). Letting C be BM and C′ contain the object ∗ and only the
morphism x yields a suitable example because the identity in C′ is x.

Solution to Exercise 134. On morphisms, we define ∆C(f) = (f , f). The functoriality
properties hold because everything in C× C is done componentwise.

i. For f : X → Y, we have (f , f) : (X, X)→ (Y, Y).

ii. For f : X → Y and g : Y → Z, we have (g, g) ◦ (f , f) = (g ◦ f , g ◦ f).

iii. For any X ∈ C0, we have ∆C(idX) = (idX , idX) = id(X,X).

Solution to Exercise 136. A quick way to show F(X,−) is a functor is to recognize it
as the composition of F with ∆(X)× idC′ , where ∆(X) is the constant functor at X.
Similarly, F(−, Y) := F ◦ (idC ×Y).

Solution to Exercise 137. Let us show the three properties of functoriality.

i. For any (f , g) : (X, X′) → (Y, Y′), by hypothesis, we have the following com-
mutative square showing F(f , g) has the right source and target.

F(X, X′) F(X, Y′)

F(Y, X′) F(Y, Y′)

F(f ,idX′)

F(idY ,g)

F(f ,idY′)

F(idX ,g)

F(f ,g)

ii. Let us have two morphisms (f , g) : (X, X′) → (Y, Y′) and (f ′, g′) : (Y, Y′) →
(Z, Z′) in C × C′. The hypothesis on F(−,−) gives the four commutative

172 ralph sarkis

squares below and the functoriality of F in each component gives the com-
mutativity of the parts denoted by ∗.

F(X, X′) F(X, Y′) F(X, Z′)

F(Y, X′) F(Y, Y′) F(Y, Z′)

F(Z, X′) F(Z, Y′) F(Z, Z′)F(idZ ,g)

F(f ,idZ′)

F(f ′ ,idZ′)

F(idZ ,g′)

F(f ,idX′)

F(idX ,g)

F(f ,idY′)

F(idY ,g)

F(f ′ ,idY′)F(f ′ ,idX′)

F(idY ,g′)

F(idX ,g′)

F(f ,g) F(f ,g′)

F(f ′ ,g) F(f ′ ,g′)

F(f ′◦ f ,idX′)

F(idX ,g′◦g)

F(f ′◦ f ,idZ′)

F(idZ ,g′◦g)

∗

∗

∗∗

We conclude from the commutativity of the whole diagram that F(f ′, g′) ◦
F(f , g) = F(f ′ ◦ f , g′ ◦ g).

iii. For any (A, B) ∈ (C× C′)0, the functoriality of either component yields

F(id(A,B)) = F(idA, idB) = idF(A,B).

9.2 Solutions to Chapter 2

Solution to Exercise 161. Let us have two morphisms f : X → Y and g : Y → Z.

• Suppose f and g are monic. For any h1, h2 : Z → Z′ satisfying h1 ◦ g ◦ f =

h2 ◦ g ◦ f , monicity of f implies h1 ◦ g = h2 ◦ g which in turn, by monicity of g
imply h1 = h2. Thus, g ◦ f is monic.

• We apply duality. Suppose f and g are epic, then f op and gop are monic so
(g ◦ f)op = f op ◦ gop is monic, thus g ◦ f is epic.

• If f and g are isomorphisms, then it is easy to check that f−1 ◦ g−1 is the inverse
of g ◦ f , implying g ◦ f is an isomorphism.

Solution to Exercise 177. We draw the categories with all the morphisms and we let
you infer the composition540 and show that they fit the requirement (by counting 540 The categories (a) and (b) have a uniquely de-

termined composition. For (c) and (d), compos-
ing the non-identity endomorphism with itself
can yield either itself or idY .

morphisms).

my first category theory textbook 173

X Y

idX idY

(a) X Y

idX idY

(b)

X Y

idX idY

(c) X Y

idX idY

(d)

Solution to Exercise 180. Let (X, Y) be an object of C×D, the pair consisting of ⟨⟩C :
X → 1C and ⟨⟩D : Y → 1D is a morphism

(⟨⟩C, ⟨⟩D) : (X, Y)→ (1C, 1D)

in C×D. Any other morphism of this type is a pair (f , g) consisting of f : X → 1C

and g : Y → 1D, but by definition of terminal objects, we must have f = ⟨⟩C and
g = ⟨⟩D. Hence, (⟨⟩C, ⟨⟩D) is the unique morphism in HomC×D((X, Y), (1C, 1D)).

For the dual statement, we need to show that (∅C, ∅D) is initial in C×D when-
ever ∅C and ∅D are initial in C and D respectively. Applying the opposite con-
struction, we find that ∅C and ∅D are terminal in Cop and Dop respectively. Thus,
the proof above shows (∅C, ∅D) is terminal in Cop ×Dop. Now, a simple (tedious)
unrolling of the definitions should convince you that Cop ×Dop = (C×D)op, so
(∅C, ∅D) is also the terminal object in (C×D)op. Therefore, (∅C, ∅D) is initial in
C×D.

Solution to Exercise 187. 1. Let f : A→ B be the only non-identity morphism in 2, it
is a monomorphism vacuously because there is only one morphism with target
A (idA). Now, for any morphism m : X → Y ∈ C1, we can define F : 2 ⇝ C by
FA = X, FB = Y and F f = m and it will be a functor. Thus, choosing m that is
not monic yields the required example.

2. If f is split monic, it has a right inverse f ′. This implies F f ′ is the right inverse
of F f because F f ◦ F f ′ = F(f ◦ f ′) = F(id) = id. We conclude that F f is split
monic.

3. We need to show that functors preserve split epimorphisms. By duality, if f is
split epic, then f op is split monic, thus it is preserved by the functor Fop. And
F f = (Fop(f op))op is split epic.

4. Functors preserve isomorphisms because a morphism is an isomorphism if and
only if it is split epic and split monic.541 If A ∼= B and i : A → B is an isomor- 541 Because split epic is equivalent to having a

left inverse and split monic is equivalent to hav-
ing a right inverse.

phism, then Fi : FA→ FB is an isomorphism, so FA ∼= FB.

Solution to Exercise 188. 1. Let C be a category with at least one morphism f that is
not monic, the only functor ⟨⟩ : C⇝ 1 sends f to id• which is monic.

174 ralph sarkis

2. Suppose that F(f) is monic and let g and h be such that f ◦ g = f ◦ h. By monicity
of F(f), F(f) ◦ F(g) = F(f ◦ g) = F(f ◦ h) = F(f) ◦ F(h) implies F(g) = F(h).
Since F is faithful, g = h.

3. We need to show faithful functors reflect epimorphisms.

Solution to Exercise 189. Let us have three monomorphisms m : Y ↣ X, n : Z ↣ X
and o : W ↣ X.

Reflexivity: We have m ◦ idY = m thus m ∼ m.
Symmetry: Suppose that m ∼ n, namely, there is an isomorphism i : Y → X such

that m = n ◦ i. Then, pre-composing with the isomorphism i−1 yields m ◦ i−1 = n
which implies n ∼ m.

Transitivity: If m ∼ n and n ∼ o, then there exist isomorphisms i : Y → Z and
i′ : W → Z satisfying m = n ◦ i and n = o ◦ i′. Therefore, we have m = o ◦ i′ ◦ i
which implies m ∼ o.542 542 Recall that the composition of two isomor-

phisms is an isomorphism.

Solution to Exercise 192. Let us have five monomorphisms m : Y ↣ X, m : Y′ ↣ X,
n : Z↣ X, n′ : Z′↣ X and o : W ↣ X.543 543 Recall that we often use m to refer to [m].

Well-defined: Suppose that m ≤ n, m′ ∼ m and n ∼ n′, namely, there is a
morphism k : Y → Z and isomorphisms i : Y ◦ Y′ and i′ : Z′ → Z such that m =

n ◦ k, m′ = m ◦ i and n = n′ ◦ i′. Combining these equalities yields m′ = n′ ◦ i′ ◦ k ◦ i
which witnesses m′ ≤ n′.

Reflexivity: We have m ◦ idY = m thus m ≤ m.
Antisymmetry: If m ≤ n and n ≤ m, then there exist morphisms k : Y → Z and

k′ : Z → Y satisfying m = n ◦ k and n = m ◦ k′. Combining these two equalities
yield m = m ◦ k′ ◦ k and n = n ◦ k ◦ k′. Therefore, since m and n are monic, we infer
that k′ ◦ k = idY and k ◦ k′ = idZ. This means k is an isomorphism and m ∼ n (so
[m] = [n]).

Transitivity: If m ≤ n and n ≤ o, then there exist morphisms k : Y → Z and
k′ : W → Z satisfying m = n ◦ k and n = o ◦ k′. Therefore, we have m = o ◦ k′ ◦ k
which implies m ≤ o.

9.3 Solutions to Chapter 3

Solution to Exercise 197. There is a simple correspondence between a set S and the
set of functions 1 → S.544 An element s ∈ S is sent to the function assigning s to ∗, 544 Recall that the terminal object in Set is the

singleton {∗}, or any other singleton.and a function f : 1 → S is sent to f (∗) ∈ S. This suggests to define an element of
a set S by a function from {∗} to S. This is indeed a categorical definition because
we can abstract away from Set.

Definition 481 (Element). In a category C with a terminal object 1,545 an element of 545 We need this requirement in the definition
because some categories may not have a termi-
nal object, and we would not know what object
could replace it.

an object X ∈ C0 is a morphism in HomC(1, X).

Unfortunately, this definition does not represent our intuition about elements
faithfully in all categories with a terminal object.

my first category theory textbook 175

- In Poset, the terminal object is the set {∗} with the only possible order ≤1=

{(∗, ∗)}. Any function 1 → (X,≤) is monotone because ≤ has to be reflexive.
Thus, the same correspondence as for Set works, and an element of (X,≤) in the
categorical sense can be seen as an “actual” element of the poset.

- In Grp, the terminal object is the trivial group with a single identity element.
For any group G, there is only one homomorphism 1 → G that must send the
identity in 1 to the identity in G. Hence, there is only one categorical element of
G no matter its size.

- In Cat, the terminal object is 1, the category with a single object • and a single
morphism id•. There is a simple correspondence between objects of a category
C and functors 1 ⇝ C. In one direction, it sends X ∈ C0 to the functor sending
• to X and id• to idX . In the other direction, it sends F : 1 ⇝ C to F(•) ∈ C0.
Therefore, a categorical element of C is an object of C.546 546 It is harder to decide whether the definition

makes sense here. An other intuitive notion of
element of C could be a morphism instead of a
object.

Solution to Exercise 210. As we have said that binary products are unique up to iso-
morphism, it is enough to show that A× B satisfies the same universal property as

B× A. Let πA and πB be the projections of A× B, we claim that B A× B A
πB πA is

the product of B and A. Indeed, for any B X A
pB pA , we use the original universal

property of A× B to find a unique mediating morphism ! : X → A× B such that
πB ◦ ! = pB and πA ◦ ! = pA.

Solution to Exercise 211.

Solution to Exercise 214. The existence and uniqueness of ∏i∈I fi is given by the uni-
versal property of the product ∏i∈I Yi with for each j ∈ I, the morphism f j ◦ π j :
∏i∈I Xi → Yj.

Solution to Exercise 241. (⇒) Suppose f : X → Y is monic, commutativity of (49) is

trivial. For any X Z X
g h satisfying f ◦ g = f ◦ h, we have g = h. Thus g = h is

the mediating morphism ! of (242), it is unique because idX ◦m = g implies m = g.

Z

X X

X Y

idX

f

idX

f
⌟g

h

!

(242)

(⇐) For any g, h : Z → X satisfying f ◦ g = f ◦ h, the universal property of the
pullback tells us there is a unique ! : Z → X making (242) commute. Since ! satisfies
g = idX ◦ ! = h, we conclude g = ! = h, thus f is a monomorphism.

X Y

Y Y
idX

f idX

f

⌟ (243)

The dual statement is that f : X → Y is epic if and only if (243) is a pushout. We
leave the proof to you.

Solution to Exercise 257. We recognize that 1 and 2 are dual statements and so are 3

and 4. We will prove something more general from which 1 and 3 follows, and use
duality for 2 and 4.

Proposition 482. Let J be a category with an initial object ∅. For any diagram F : J⇝ C,
we have limJF = F(∅).

176 ralph sarkis

Proof. The limit cone comprises F(∅) as the tip, and for each X ∈ D0, ϕX = F(!X) :
F(∅) → FX is the image of the unique morphism !X : ∅ → X under F. We
can verify this is a cone over F because for any a : X → X′ in J1, F(a) ◦ F(!X) =

F(a ◦ !X) = F(!X′).547 547 By initiality of ∅, a ◦ !X = !X′ .

Let {ψX : X → FX} be another cone over F. There is a morphism ψ∅ : X →
F(∅), and it is a morphism of cones to the limit cone because for any X ∈ J0,
F(!X) ◦ ψ∅ = ψX is a consequence of the ψXs forming a cone. Any other morphism
of cone f : X → F(∅) must satisfy F(!∅) ◦ f = ψ∅, but !∅ is the identity on ∅, hence
idF(∅) ◦ f = ψ∅ implies f = ψ∅.

Corollary 483 (Dual). Let J be a category with a terminal object 1. For any diagram
F : J⇝ C, we have colimJF = F(1).

We can now apply these results to Exercise 257.

1. The limit of A→ B is A.

2. The colimit of A→ B is B.

3. The limit of A← B→ C is B.

4. The colimit of A→ B← C is B.

Solution to Exercise ??. If {ψX : A → DX}X∈J0 is a cone over F, then the family
{FψX}X∈J0 is a cone over F ◦ D since Da ◦ ψX = ψY implies FDa ◦ FψX = FψY

for any a : X → Y ∈ J1. On morphisms FD sends g : {ψX}X∈J0 → {ϕX}X∈J0 to
Fg : {FψX}X∈J0 → {FϕX}X∈J0 . Again, the fact that Fg is a morphism of cones
follows straightforwardly from

ϕX ◦ g = ψX =⇒ FϕX ◦ Fg = FψX .

Observe that cones and cocones are dual in the sense that Cone(D) is the same
as Cocone(Dop).548 Therefore, FD : Cocone(D)⇝ Cocone(F ◦D) can be defined as 548 Recall that Dop is the functor Jop ⇝ Cop with

the same action as D.Fop
Dop : Cone(Dop)⇝ Cone(Fop ◦ Dop) = Cone((F ◦ D)op).

Solution to Exercise 275. Let pA : X → A and pB : X → B be such that (244) com-
mutes. A mediating morphism ! : X → A must satisfy idA◦! = pA and f ◦! = pB.
The first equality ensures ! = pA is unique and satisfies the second equality because
the outer square commuting yields f ◦ pA = pB.

X

A A

B B

f

idA

f

idB

pB

pA

(244)

X

A′ A

B B

f ◦i

i

f

idB

pB

pA

(245)

Let pA : X → A and pB : X → B be such that (245) commutes. A unique mediating
morphism ! : X → A must satisfy i◦! = pA and f ◦ i◦! = pB. Post-composing the

my first category theory textbook 177

first equality by i−1 implies ! = i−1 ◦ pA is unique and satisfies the second equality
because f ◦ i ◦ i−1 ◦ pA = f ◦ pA = pB.

Solution to Exercise 284. We will show that if C has all pullbacks and a terminal
object, then it has all finite products and equalizers. This implies, using Remark
278, that C is finitely complete.

For finite products, recall that it is enough to show that C has all binary products
as it already has the empty product (the terminal object). We claim that the pullback

of A 1 B
⟨⟩ ⟨⟩

is the binary product A× B.

A×1 B B

A 1

πA

πB

⟨⟩

⟨⟩

⌟ (246)

Indeed, for any A X B
pA pB , we have ⟨⟩ ◦ pA = ⟨⟩ ◦ pB, thus, there is a unique

morphism ! : X → A ×1 B making (247) commute. Since the commutativity of
the squares always hold, this is equivalent to the unviersal property of the binary
product. Hence A× B ∼= A×1 B.

X

A×1 B B

A 1

πA

πB

⟨⟩

⟨⟩

⌟

pB

pA

!

(247)

9.4 Solutions to Chapter 4

Solution to Exercise 297. If C has all binary products, we recall from Footnote 204

that sending (X, Y) to X×Y is a functor, and we use Exercise 136 to define −× X.
If C only has binary products with X, we do this manually.

We define − × X on morphisms by sending f : Y → Y′ ∈ C1 to f × idX :
Y × X → Y′ × X. Functoriality follows from the definition of × on morphisms.
Indeed, idY × idX is the only morphism making (248) commute and (g ◦ f)× idX is
the only morphism making (249) commute.

Recall that if f : A → A′ and g : B → B′, f ×
g : A × B → A′ × B′ is the unique morphism
making the diagram below commute:

A A× B B

A′ A′ × B′ B′

πA

f f×g

πA′

πB

g

πB
Y Y× X

Y Y× X

πY

idY idY×idX

πY

(248)

Y Y× X

Y′ Y′ × X

Y′′ X

πY

f f×idX

πY′

g×idXg

πY′′

g◦ f (g◦ f)×idX
(249)

Solution to Exercise 303. First, we know that the pullback of the monomorphism m
along f is monic by Theorem 271. Next, for n : I′ ↣ X ∈ SubC(Y), we need to
show [m] = [n] implies [f ∗(m)] = [f ∗(n)].549 In (250), we need to show there is an 549 Recall that [m] = [n] when there is an isomor-

phism i satifying n = m ◦ i.

178 ralph sarkis

isomorphism i′ : J → J′ making everything commute.

J′ I′

J I

X Y
f ∗(m)

f

j

m

n

i
f ∗(n)

j′

(250)

By the pullback property of J′, there is a unique mediating morphism i′ : J → J′

commuting with (250).550 Similarly, the pullback property of J, there is a unique 550 Use the fact that n ◦ i−1 ◦ j = m ◦ j = f ◦
f ∗(m).mediating morphism i′−1 : J′ → J commuting with (250).551 The fact that i′ and
551 Use the fact that m ◦ i ◦ j′ = n ◦ j′ = f ◦ f ∗(n).i′−1 are inverses follows from viewing i′−1 ◦ i′ as a mediating morphism from the

pullback J to itself which must be the identity by uniqueness. Similarly for i′ ◦ i′−1.
For functoriality of SubC, we need to show id∗(m) = m and g∗(f ∗(m)) =

f ◦ g∗(m). The first equality follows from Exercise 275 and the second from the
pasting lemma.

Solution to Exercise 323. 1. On morphisms, id sends f : X → Y to the commutative
square f : idX → idY depicted in (??). Since the identity of idX ∈ C→0 is idX :
idX → idX and the composition of commutative squares is done by composing

the left part and right part independently, we conclude that id(f ◦ g) = f ◦ g =

id(f) ◦ id(g). Thus, id is a functor.

X X

Y Y

f

idX

f

idY

(251)

2. On morphisms, s sends a commutative square ϕ : f → g to the morphism s(f)→
s(g) in the square, we denote it s(ϕ). In other words, we send a commutative

square to its left part. Again, since the composition in C→ is done independently
on the left and right part, we find that s(ϕ ◦ ψ) = s(ϕ) ◦ s(ψ), thus s is a functor
(see (252) for a visual aid).

• •

• •

• •

f

g

h

s(ψ)

s(ϕ)

t(ψ)

t(ϕ)

(252)

3. On morphisms, t sends a commutative square ϕ : f → g to the morphism t(f)→
t(g) in the square, we denote it t(ϕ). With a similar argument to the second

point, we conclude that t is a functor.

Solution to Exercise ??.

Solution to Exercise 332. The terminal object of C/X is the identity morphism idX :
X → X. For any object of the slice category f : A → X, we have the commutative
triangle (253) with ! = f . Uniqueness of ! follows from idX◦! = f =⇒ ! = f .

A X

X
f

f

idX

(253)

The dual statement is that idX is the initial object of X/C.

my first category theory textbook 179

9.5 Solutions to Chapter 5

Solution to Exercise 344. (⇒) For any g : Y → Y′, the naturality of ϕ yields this
commutative square.

F(X, Y) G(X, Y)

F(X, Y′) G(X, Y′)

F(X,g)=F(idX ,g)

ϕX,Y

G(idX ,g)=G(X,g)

ϕX,Y′

(254)

We conclude that ϕX,− is a natural transformation F(X,−). A symmetric argument
works for ϕ−,Y (see (255)).

F(X, Y) G(X, Y)

F(X′, Y) G(X′, Y)

ϕX,Y

ϕX′ ,Y

F(f ,idY) G(f ,idY) (255)

(⇐) For any (f , g) : (X, Y) → (X′, Y′), we note that, by functoriality, F(f , g) =

F(f , idY′) ◦ F(idX , g) and similarly for G. Thus, we can combine the naturality of
ϕX,− and ϕ−,Y to obtain the commutativity of ϕX,Y as shown in (256).

F(X, Y) G(X, Y)

F(X, Y′) G(X, Y′)

F(X′, Y′) G(X′, Y′)

F(idX ,g)

ϕX,Y

G(idX ,g)
ϕX,Y′

ϕX′ ,Y′

F(f ,idY′) G(f ,idY′)

F(f ,g) G(f ,g) (256)

Solution to Exercise 348. Let F, G : C⇝ D be functors.
(⇒) If ϕ : F ⇒ G is a natural isomorphism, then it has an inverse ϕ−1 : G ⇒ F

which satisfies ϕ · ϕ−1 = 1G and ϕ−1 · ϕ = 1F. Looking at each components, we find
ϕX ◦ (ϕ−1)X = idX and (ϕ−1)X ◦ ϕX = idX , hence they are isomorphisms.

(⇐) Let ϕ : F ⇒ G be a natural transformation such that ϕX is an isomorphism
for each X ∈ C0. We claim that the family ϕ−1

X is the inverse of ϕ. After we show
that this family is a natural transformation G ⇒ F, the construction implies it is
the inverse of ϕ. For any f : X → Y ∈ C1, the naturality of ϕ implies ϕY ◦ F(f) =
G(f) ◦ ϕX . Pre-composing with ϕ−1

X , we have G(f) = ϕY ◦ F(f) ◦ ϕ−1
X and therefore

ϕ−1
Y ◦ G(f) = ϕ−1

Y ◦ ϕY ◦ F(f) ◦ ϕ−1
X = F(f) ◦ ϕ−1

X

yields the naturality of ϕ−1.

Solution to Exercise 352. We have already seen in Exercise 146 that we can take the
dual of a functor F : C ⇝ D to obtain a functor Fop : Cop ⇝ Dop. It remains to
check that a natural transformation F ⇒ G can be identified with a natural trans-
formation Gop ⇒ Fop. This follows from observing that the naturality square (257)
in D corresponds to the naturality square (258) in Dop.552 552 i.e.: (257) commutes if and only if (258) com-

mutes.

180 ralph sarkis

FX GX

FY GY

F f G f

ϕX

ϕY

(257)
GopY FopY

GopX FopX

Fop fGop f

ϕX

ϕY

(258)

Solution to Exercise 372. On morphisms, this functor must send a pair of natural
transformations η : F ⇒ F′ and ϕ : G ⇒ G′ to a natural transformation FG ⇒ F′G′.
This is exactly what horizontal composition does.

To see that horizontal composition is functorial, first note that 1F ⋄ 1G = 1FG.
Next, the fact that horizontal composition commutes with composition of functors
is exactly the interchange identity.

Solution to Exercise 386. We need to show that ≃ is reflexive, symmetric and transi-
tive. Symmetry is trivial because the definition of C ≃ D is symmetric. Reflexivity
follows from the fact that the identity functor on any category is fully faithful and
essentially surjective.

For transitivity, given the categories and functors represented in (259) with nat-
ural isomorphisms ϕ : FG ⇒ idD, ψ : GF ⇒ idC, ϕ′ : F′G′ ⇒ idE and ψ′ : G′F′ ⇒
idD, we claim that the composition G ◦ G′ is the quasi-inverse of F′ ◦ F.

C D E

F F′

G G′

(259)

Since the biaction of functors preserves natural isomorphisms,553 we have two 553 This holds because acting on the left or right
with a functor is a functor, part of this is shown
in the next solution and it also follows from the
previous exercise.

natural isomorphisms

ϕ′ · (F′ϕG′) : F′FGG′ ⇒ idE and ψ · (Gψ′F) : GG′F′F ⇒ idC,

which shows C ≃ E.

Solution to Exercise 387. We will show the following two implications

∀D C ≃ C′ =⇒ [C, D] ≃ [C′, D]

∀C D ≃ D′ =⇒ [C, D] ≃ [C, D′]

and infer that C ≃ C′ and D ≃ D′ implies

[C, D] ≃ [C′, D] ≃ [C′, D′].

For the first implication, let F : C ⇝ C′ and G : C′ ⇝ C be quasi-inverses. We
define the functor (−)F : [C′, D]⇝ [C, D] that acts on functors by pre-composition
and on natural transformations by the right action in Definition 362.554 Similarly, 554 i.e.: H : C ⇝ D is mapped to HF = H ◦ F

and ϕ : H ⇒ H′ is mapped to ϕF. Functoriality
follows from the properties of the right action.

Another way to show functoriality is to recall
that ϕF = ϕ ⋄ 1F and hence (−)F is the compo-
sition of the functor

id[C′ ,D] × F : [C′, D]× 1⇝ [C′, D]× [C, C′]

with the horizontal composition functor defined
in Exercise 372.

we define the functor (−)G : [C, D] ⇝ [C′, D]. We claim that (−)F and (−)G are
quasi-inverses.

Let Φ : GF ⇒ idC be a natural isomorphism witnessing F and G being quasi-
inverses, then (−)Φ is a natural isomorphism from (−)GF to id[C,D]. Indeed, for
any ϕ : H ⇒ H′ ∈ [C, D]1, (260) commutes as the top path and bottom path are
both equal to ϕ ⋄Φ and HΦ is an isomorphism because Φ is and functors preserve
isomorphisms.

HGF H

H′GF H′

ϕGF

HΦ

ϕ

H′Φ

(260)

my first category theory textbook 181

We leave to you the symmetric argument showing (−)FG ∼= id[C′ ,D] and the similar
argument for the second implication.

9.6 Solutions to Chapter 6

Solution to Exercise 391. Let f : A → B be an isomorphism. For each X ∈ C0, we
know from our definition of the other Hom functor that − ◦ f : Hom(B, X) →
Hom(A, X) is an isomorphism.555 It remains to show that this is natural in X. For 555 All functors preserve isomorphisms, see Ex-

ercise 187.all g : X → X′ we have to show (261) commutes.

HA(X) HB(X)

HA(X′) HB(X′)

(−)◦ f

g◦(−) g◦(−)

(−)◦ f

(261)

Starting with h in the top left, both paths send it to g ◦ h ◦ f . We conclude that
HA ∼= HB. We leave the proof of the dual to you.

Solution to Exercise 405. (⇒) Suppose there is a natural isomorphism ϕ : HomC(X,−)⇒
1, then for any object Y ∈ C0, there is a bijection HomC(X, Y) ∼= {⋆}. Hence, there

is a unique morphism X → Y.
(⇐) Suppose that X is initial, then for any Y ∈ C0, we have an isomorphism

ϕY : HomC(X, Y)→ 1(Y) which sends the unique morphism X → Y to ⋆. We need
to show this family is natural in Y. Let f : Y → Y′ ∈ C1, (262) clearly commutes
because all sets are singletons.

HomC(X, Y) 1(Y)

HomC(X, Y′) 1(Y′)

f ◦−

ϕY

id1

ϕY′

(262)

9.7 Solutions to Chapter 7

Solution to Exercise 434. We will proceed by defining the units and counits because,
as you will see, they are practically given and then we will verify they satisfy the
triangle identities. We denote (ϕX , ϕY) for a commutative square with s(ϕX , ϕY) =

ϕX and t(ϕX , ϕY) = ϕY

(t ⊣ id) The component of the unit at f ∈ C→0 is a commutative square from
f to id(t(f)) = idt(f). You should convince yourself that (263) is the only such
square that is guaranteed to exist no matter what C is, we have η f = (f , idt(f)). The
component of the counit at X ∈ C0 is a morphism from t(idX) = X to X. Again,
the only possible choice is εX = idX . We check in the following derivations that the
triangle identities hold.

εt(f) ◦ t(η f) = idt(f) ◦ idt(f) = idt(f)

id(εX) ◦ ηid(X) = (idX , idX) ◦ (idX , idX) = (idX , idX) = idid(X).

s(f) t(f)

t(f) t(f)

f idt(f)

idt(f)

f

(263)

(id ⊣ s) The component of the unit at X ∈ C0 is a morphism from X to s(id(X)) =

X, thus ηX = idX . The component of the counit at f ∈ C→0 is a commutative

182 ralph sarkis

square from id(s(f)) = ids(f) to f . Again, there is only once choice: ε f = (ids(f), f)
depicted in (264). The following derivations show the triangle identities hold.

εid(X) ◦ id(ηX) = (idX , idX) ◦ (idX , idX) = (idX , idX) = idid(X)

s(ε f) ◦ ηs(f) = ids(f) ◦ ids(f) = ids(f).

s(f) s(f)

s(f) t(f)

ids(f) f

ids(f)

f

(264)

(? ⊣ t) If t has a left adjoint ?, then there is a isomorphism HomC→(?X, f) ∼=
HomC(X, t(f)) that is natural in X and f .

Solution to Exercise 449. Using Theorem 430, Theorem 443 and Proposition 444, we
can obtain two chains of adjunctions.

C D [J, D]
L ∆J

D

limJR

⊣ ⊣ C [J, C] [J, D]

∆J
C L−

R−limJ

⊣ ⊣

Then, observing that both composite left adjoints are equal,556 we conclude by 556 Both ∆J
D ◦ L and L∆J

C send X ∈ C0 to the
constant functor at LX.Corollary 421 that RlimJ ∼= limJ(R−).

9.8 Solutions to Chapter 8

Solution to Exercise 457. By the universal property of η′ and one of the triangle iden-
tities, ε′KA is the unique morphism such that R′ε′KA ◦ η′R′KA = idR′KA (see (265)).

R′KA R′L′R′KA L′R′KA

R′KA KA

η′
R′KA

idR′KA
ε′KAR′ε′KA

R

(265)
We claim that KεA also fits in the place of ε′KA in (265) which means they are

equal by uniqueness. We need to show R′KεA ◦ η′R′KA = idR′KA. Recalling that
η′ = η and R′K = R, we rewrite the equality as RεA ◦ ηRA = idRA which holds by
a triangle identity.

	Preliminaries
	Abstract Algebra
	Order Theory
	Topology

	Categories and Functors
	Categories
	Functors
	Diagram Paving

	Duality
	Contravariant Functors
	Opposite Category
	Duality in Action
	More Vocabulary

	Limits and Colimits
	Examples
	Generalization
	Diagram Chasing

	Universal Properties
	Examples
	Generalization
	Comma Categories

	Natural Transformations
	Functor Categories
	The 2–category
	Equivalences

	Yoneda Lemma
	Representable Functors
	Yoneda Lemma
	Universality as Representability

	Adjunctions
	Equivalent Definitions
	Results and Examples

	Monads and Algebras
	POV: Category Theory
	POV: Universal Algebra
	POV: Computer Programs
	Exercises

	Solutions to Exercises
	Solutions to Chapter 1
	Solutions to Chapter 2
	Solutions to Chapter 3
	Solutions to Chapter 4
	Solutions to Chapter 5
	Solutions to Chapter 6
	Solutions to Chapter 7
	Solutions to Chapter 8

